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応用力学演習資料（応用物理学科）(Version 2020, 2Q)

物理学の基幹である力学については既にいくつかの科目で学習しているが，力学，熱力学の理解を
着実に定着させるために設計されたのがこの科目である。本格的に物理学を学んでいくために，演習
を通じてより深い理解を獲得し，これらの内容を自由に使いこなせるようにすることが眼目である。

この科目は「応用力学」，「応用力学序論」，「熱力学序論」，「熱・統計力学」などの科目に対応する
演習であり，それらの基礎となる「物理学 1, 2」についても修得済みであることを前提とする。また
数学的技術については，高校レベルでの微積分とベクトル，1年次で学んだ「微分」，「積分」，「偏微
分」，「重積分」を前提とする。「線形代数」の基礎的な知識を必要とするものもある。

この科目において，学生は積極的に問題を解き，授業に参加することが肝要である。理解を深める
ために学生同士での積極的な議論は重要であるが，他の解答を単に写すだけでは何の意味もないこと
には留意して頂きたい。教員に質疑したり，学習支援センターを活用することも良いが，センターを
利用する際は，必ず，教材，ノート，教科書を持参し，どこまで考えたか，どこが分らなかったかを
明確にしてから訪問してもらいたい。センターの先生には，問題も十分読み込まずに，単純に答えを
教わるような態度の学生の指導は必要ないと伝えてあることを記しておく。

資料の内容は，演習の時間内だけで学習する量より少し多めになっている。授業で取り上げられな
かった問も各自の鍛錬のために自主的に取り組んで頂きたい。また，新しい教科であるので，もし資
料に誤りや不明な点があれば担当者に指摘して頂きたい。

氏名 学籍番号

c⃝ K.Kato 2020.03.03
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Part-1 解析力学

1 質点の力学的物理量

教科書 1章，2章，3章参照。運動量，角運動量，力のモーメントは 3.3.1節参照。ベクトルの計
算，特に外積は付録A.5 参照。（以下 1∼4節で，「教科書」とは，加藤潔「理工系物理学講義」（培風
館）を指す。

問 1 質量mの質点が，xy平面内で原点を中心とする半径 rの円周上を角速度 ωで等速円運動して
いる。時刻 t = 0での位置は (r, 0)である。

ベクトルを成分で表すときは x, y成分を示して答える。

(1) 時刻 tにおける，この質点の位置 r⃗，速度 v⃗，加速度 a⃗をベクトルの成分を示して答えよ。

(2) 位置ベクトル r⃗と速度ベクトル v⃗が直交することを示せ。

(3) 速度ベクトルの大きさ v = |v⃗|と加速度ベクトルの大きさ a = |⃗a|の関係を答えよ。

(4) 運動の様子を図で表し，そこに，位置，速度，加速度をベクトルとして図示せよ。

(5) この質点に働いている力の大きさと向きを答えよ。この力をなんと呼ぶか答えよ。

(6) この質点の運動エネルギーを答えよ。

(7) この質点の運動量 p⃗と角運動量 ℓ⃗を答えよ。ベクトルの成分を示して答えること。この問で
は x, y, z成分を示して答える。

問 2 x, y軸を水平方向に，z軸を鉛直上向き方向にとる。t = 0に原点から，初速度 (v0, 0, u0)で質
量mの質点を斜めに投射した（v0, u0 > 0）。重力加速度の大きさは gとする。

ベクトルを成分で表すときは x, y, z成分を示して答える。

(1) 時刻 tにおける，この質点の位置 r⃗，速度 v⃗，加速度 a⃗をベクトルの成分を示して答えよ。

(2) 時刻 tにおける，この質点の運動量 p⃗と角運動量 ℓ⃗， および，この質点に働く力 F⃗ と力の
モーメント N⃗ をベクトルの成分を示して答えよ。

(3) それらの間に
dp⃗

dt
= F⃗，

dℓ⃗

dt
= N⃗ が成り立つことを示せ。

(4) 時刻 tにおける，この質点の運動エネルギーKとポテンシャルエネルギー U を答えよ。後
者は z = 0を基準とする。そして，両者の和が時間的に一定であることを示せ。

問 3 xy 平面内を r⃗ = (R(ct − sin ct), R(1 − cos ct)) という運動をしている質量 m の質点がある
（c > 0, R > 0）。

ベクトルを成分で表すときは x, y成分を示して答える。

(1) 定数 c, R の SIにおける単位を答えよ。

(2) この質点の運動を 0 <= t <= 2π/cの範囲で図で示せ。このグラフが表す図形の名前を答えよ。

(3) この質点の速度と加速度をベクトルの成分を示して答えよ。また (2)で扱った範囲で速度の
大きさが最大となる位置とその大きさを答えよ。
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問 4 r⃗ = (R cosωt,R sinωt, αt)という運動をしている質量mの質点がある (R,ω, α > 0)。

ベクトルを成分で表すときは x, y, z成分を示して答える。

(1) 定数R, ω, α の SIにおける単位を答えよ。

(2) この質点の運動の軌跡はどのようなものか説明せよ。

(3) この質点の運動量 p⃗と角運動量 ℓ⃗を答えよ。ベクトルの成分を示して答えること。

(4) 物理的にみて，この質点の角運動量は z軸の方向と考えられるが，前項 (3)で得られた ℓ⃗は
時間ともに増大するように見える。適切な時間平均をとると，この平均の意味で ℓx, ℓy はゼロ
と考えることができる。どのような時間平均をとればよいか答えよ。

問 5 質量mの質点が x軸上を運動している。この質点は t = 0のとき，位置と速度は x = 0, v = V

である（V > 0）。この質点には力 F = −bv が働いている（b > 0）。

(1) 時刻 tでの質点の速度と位置を運動方程式を解いて答えよ。

(2) この質点の運動を表す，横軸を時間 tとし，縦軸を速度 vとしたグラフを描け。

この質点の運動を表す，横軸を時間 tとし，縦軸を位置 xとしたグラフを描け。

(3) t = 0における質点の運動エネルギーを答えよ。

(4) 0 <= t < ∞ の間にこの質点に働く力がなした仕事を計算し，それが (3)を相殺することを
示せ。

問 6 質量mの質点が x軸上を運動している。この質点は t = 0のとき，位置と速度は x = x0, v = v0

である（x0 > 0, v0 > 0）。この質点には力 F = −kx が働いている（k > 0）。

(1) 時刻 tでの質点の速度と位置を運動方程式を解いて答えよ。

(2) 解を x = A sin(ωt + ϕ0)の形に表したとき，ωおよび振動の周期をm, kを用いて答えよ。
また，振幅A，初期位相 ϕ0を答えよ。

(3) この質点の運動を表す，横軸を時間 tとし，縦軸を速度 vとしたグラフを描け。

この質点の運動を表す，横軸を時間 tとし，縦軸を位置 xとしたグラフを描け。

(4) t = 0における質点の運動エネルギーK と働く力によるポテンシャルエネルギー U を答え
よ。後者は x = 0を基準とする。そして，両者の和が時間的に一定であることを示せ。

2 ラグランジュ形式の力学（１）

以下，2∼4節では，時間微分を
dF

dt
を Ḟ と表す記法を必要に応じ活用すること。

問 1 平面上のデカルト座標 (x, y)と極座標 (r, ϕ)を考える。図 1の (1)参照。図の点Pの座標を扱う。

(1) (x, y)を (r, ϕ)を用いて表せ。

(2) (r, ϕ)を (x, y)を用いて表せ。

(3) 面積分におけるヤコビアン J を求めよ。dxdy = Jdrdϕ となる量である。

(4) 質量mの質点が平面上を運動するとき，運動エネルギーK を極座標 (r, ϕ)とその時間微分
を用いて答えよ。
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図 1: (1) 極座標（2次元）， (2)球座標（3次元）

問 2 空間内のデカルト座標 (x, y, z)と球座標 (r, θ, ϕ)を考える。図 1の (2)参照。図の点Pの座標を
扱う。

(1) (x, y, z)を (r, θ, ϕ)を用いて表せ。

(2) (r, θ, ϕ)を (x, y, z)を用いて表せ。

(3) 体積積分におけるヤコビアン J を求めよ。dxdydz = Jdrdθdϕ となる量である。

(4) 質量mの質点が空間内を運動するとき，運動エネルギーKを球座標 (r, θ, ϕ)とその時間微
分を用いて答えよ。

x

y

ℓ
ϕ

m2, (x2, y2)

m1, (x1, y2)

(1) (2)

m

O

s

図 2: (1)連結された 2つの質点, (2)空間内の曲線に沿って運動する質点

問 3 xy平面を質量m1，デカルト座標 (x1, y1)の質点 1，質量m2，デカルト座標 (x2, y2)の質点 2が
運動する。両者は長さ ℓの変形しない軽い棒で連結されている。図 2の (1)参照。

(1) q1 = x1, q2 = y1, q3 = x2, q4 = y2とする。この力学系は 4自由度のように見えるが束縛条
件が 1つあるので 3自由度である。4つの座標の間に成り立つ束縛条件を答えよ。

(2) この力学系の運動エネルギーK を q1, q2, q3およびこれらの時間微分を用いて答えよ。

(3) 一般座標の割り当てを変更し，3自由度の座標として，q1 = x1, q2 = y1, q3 = ϕとする。こ
こで ϕは質点 1から質点 2へ向かうベクトルと x軸がなす角度である。この力学系の運動エネ
ルギーK を q1, q2, q3およびこれらの時間微分を用いて答えよ。

問 4 ある曲線に沿って質量mの質点が運動する。これは 1自由度の運動である。図 2の (2)参照。
曲線上のある点Oを原点とし，曲線に沿った点Oから質点までの曲線の長さを sとする。
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(1) この曲線が x = f(θ), y = g(θ), z = h(θ) と表されているとする。θは媒介変数（パラメタ）
であり，θ = 0が点Oとなるようにとられている。質点の位置が θであるとし，sをこれらを用
いて答えよ。

注：上では分り易いように f, g, hという関数記号を使ったが，通常物理では，x = x(θ), y = y(θ), z = z(θ)

と関数記号と物理量を同一視した記法を用いることが多い。

(2) 座標を q = sとする。また，θは任意のパラメタなので，s自身を曲線を記述するパラメタ
と考えることもできるので（s = 0が点Oに対応するのは自明），以下，θ = sとする。この質
点の運動エネルギーを答えよ。

問 5 半径 rの薄い円板が直線上を運動する。図 3の (1)参照。円板は図の平面内を運動する。円板の
運動を記述する座標として直線に沿った円板の中心の位置 q1 = xと円板の中心のまわりの回転
角 q2 = ϕを考える。

この円板がすべらずに転がるとする。

(1) 円板の接地点の速度を答えよ。（接地点とは，その瞬間に円板が x軸に接触している点であ
り，円板の特定の点ではない。）

(2) q̇1と q̇2の間の関係式を答えよ。

(3) この系の自由度はいくつか。

(4) 上の (2)で求めた束縛条件は座標だけの関係式で表すことができるか考え，可能な場合はそ
の関係式を答えよ。（このようなときホロノミックな束縛条件という。）
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図 3: (1) 転がる円板（1次元）， (2)転がる円板（2次元）

問 6 半径 rの薄い円板が xy平面上を運動する。図 3の (2)参照。円板は常に図のように xy平面に垂
直な姿勢を保つ。円板の運動を記述する座標として中心の平面上の位置 (q1, q2) = (x, y)，円板
の中心のまわりの回転角 q3 = ϕ，円板を含む平面が xy平面と交わる線が x軸となす角度 q4 = ψ

を考える。

この円板がすべらずに転がるとする。接地点に関しては前問を参照すること。

(1) q1, q2, q3, q4あるいはこれらの時間微分の間に成り立つ関係式を 2つ答えよ。

(2) この系の自由度はいくつか。

(3) 上の (2)で求めた束縛条件は座標だけの関係式で表すことができるか考え，可能な場合はそ
の関係式を答えよ。
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3 ラグランジュ形式の力学（２）

問 1 質量mの質点の鉛直方向の運動を考える。重力加速度の大きさを gとする。鉛直上向きに x軸
をとり，q = xとする。図 4の (1)参照。

(1) この系を記述するラグランジアン Lを答えよ。

(2) オイラー・ラグランジュの運動方程式を答えよ。

(3) この運動方程式が，ニュートンの運動方程式の与えるものと同等であることを確認せよ。

(4) t = 0で x = x0, ẋ = v0 であるとき，qを時間の関数として答えよ。
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図 4: (1) 重力による運動， (2)ばねによる運動

問 2 質量mの質点がばね定数 kの一端を固定されたばねに接続されており，x軸に沿って運動する。
ばねが自然長のとき，質点は x = 0にある。q = xとする。図 4の (2)参照。

(1) この系を記述するラグランジアン Lを答えよ。

(2) オイラー・ラグランジュの運動方程式を答えよ。

(3) この運動方程式が，ニュートンの運動方程式の与えるものと同等であることを確認せよ。

問 3 図 5の (1)に表される振り子を考える。質点の質量はm，紐の長さは ℓである。紐は伸び縮み
せず，質量は無視できる。デカルト座標は図に示すように，水平方向を x，鉛直下向きを yと
し，紐の支点Oを原点とする。支点からみた鉛直方向と紐のなす角度を θとする。

(1) 質点の x, y座標を ℓ, θを用いて答えよ。

(2) この系は自由度は 1である。q = θとし，この系を記述するラグランジアン Lを答えよ。

(3) オイラー・ラグランジュの運動方程式を答えよ。

(4) 振幅が ℓに比べて十分小さいとき，振動の周期を答えよ。

問 4 図 5の (2)に表される二重振り子を考える。質点の質量はm1,m2，紐の長さは ℓ1, ℓ2である。紐
は伸び縮みせず，質量は無視できる。デカルト座標は図 (1)と同様に，水平方向を x，鉛直下向
きを yとし，紐の支点Oを原点とする。支点からみた鉛直方向と紐のなす角度を θ1, θ2とする。

(1) 2つの質点の座標 x1, y1, x2, y2を ℓ1, θ1, ℓ2, θ2を用いて答えよ。

(2) この系は自由度は 2である。q1 = θ1, q2 = θ2とし，この系を記述するラグランジアン Lを
答えよ。

(3) オイラー・ラグランジュの運動方程式を各自由度に対して答えよ。
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図 5: (1) 単振り子， (2)二重振り子
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図 6: 円錐面内を運動する質点

問 5 図 6のように，中心軸が鉛直であり，中心線と母線のなす角度が αの滑らかな円錐面がある。
この円錐面の上を質量mの質点が運動する。中心軸を z軸とし，円錐の頂点が z = 0であると
する。また，中心軸に垂直な xy面内の回転角を ϕとし，この z, ϕで質点の位置を表す。座標
を q1 = z, q2 = ϕとする。重力加速度の大きさを gとする。

(1) この系を記述するラグランジアン Lを答えよ。

(2) 結果から，q2は循環座標なので保存量が存在する。保存量
∂L
∂q̇2
を答えよ。この保存量は何

を表すのか答えよ。

(3) q1 についてのオイラー・ラグランジュの運動方程式を答えよ。このとき，(2)の保存量は
∂L
∂q̇2

= L として，定数 Lを用いて表してよい。

(4) この質点が z = z0の位置で，ż = v0, ϕ̇ = ω0 の速度を持っていたとする。エネルギー保存
則から，この質点が運動できる zの範囲は有限で z1 <= z <= z2 の範囲であることが示される。
z1, z2を求める計算の方針を答えよ。（z1, z2そのものを閉じた形で答えるのはやや難しいので
方針のみで良い。）

問 6 図 7のように，3つの質点と 4つのばねが直線状に連結されている。質点の質量はいずれもm

であり，ばねはいずれも質量は無視でき自然長が ℓでばね定数は kである。これらに沿って x

軸があり，その座標で質点の位置はそれぞれ x1, x2, x3と表される。左のばねの左端は x = 0の
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図 7: 3つの質点と 4つのばねの系

位置で，右のばねの右端は x = 4ℓの位置で固定されている。

(1) この系のポテンシャルエネルギーを k, x1, x2, x3, ℓで表せ。

(2) この系は 3自由度であり，つりあいの位置でゼロになる座標のほうが都合がよいので q1 =

x1 − ℓ, q2 = x2 − 2ℓ, q3 = x3 − 3ℓ とし，以降はこれらを用いる。この力学系のラグランジアン
を q1, q2, q3およびそれらの微分を用いて答えよ。

(3) それぞれの自由度についてのオイラー・ラグランジュの運動方程式を答えよ。

(4)得られた 3本の連立微分方程式の解を求める。解の形として，q1 = A1e
iωt, q2 = A2e

iωt, q3 =

A3e
iωt を仮定する。ここで ω,A1, A2, A3はまだ未知の定数であり，以降でこれらを決定するの

が目的である。（なお，最終的には上の表現の実数部分をとったものが，現実の解である。）式

を見やすくするため
k

m
= ω2

0 とし，仮定した解の式を (3)に代入し，結果をA1, A2, A3に対す

る連立方程式として答えよ。

注：以下，線形代数で学んだ考え方や用語が出てくるので，理解が不十分なものは復習すること。線形

代数は物理を学ぶ上で不可欠のアイテムで，この問はその一例である。

(5) A⃗ =

 A1

A2

A3

 とおく。(4)で得られた連立方程式は MA⃗ = 0⃗ と書くことができる。ここで

M は 3次の正方行列である。M を答えよ。

(6) まだ未知である A⃗を求めたいのだが，単純にMA⃗ = 0⃗ を A⃗ =M−10⃗ と変形すると，ゼロ
の解しか得られない。これでは系が運動しないことになってしまうので，M は正則行列ではな
いとしたい。すると detM = 0が要求されるので，この式から ωが決まる。この detM = 0

を固有方程式（特性方程式）と呼ぶ。固有方程式を ω2を変数として解き，3つの固有振動数を
答えよ。

注：ω/2πが振動数だが，角振動数 ωも単に「振動数」と呼んでいる。

(7) 前項で得られた振動数がどのような振動モード（基準振動）を表しているのかを調べる。解
を ω2

j (j = 1, 2, 3)とし，それをM に代入したものをMjとする。MjA⃗ = 0⃗ を解くのだが，こ
の連立方程式は不定であるので，q1, q2, q3 の振幅であるA1, A2, A3の比だけが定まることにな
る。MjA⃗ = 0⃗ を解き，得られた結果から振動モードがどのような振動か，図で示して答えよ。

問 7 問 4の二重振り子で，振幅が小さいとして，sin θ = θ, cos θ = 1− θ2/2と近似し，ラグランジ
アンから θ3以上の項を消す。簡単のため ℓ1 = ℓ2 = ℓ, m1 = m2 = mとし，問 6 と同様に運動
方程式を解いて，運動を求めよ。固有振動数と振動モードを答えよ。

問 8 問 3 の振り子で，支点Oが固定されているのではなく，y方向に時間とともにB cosβtで振動
する場合を考える（B > 0, β > 0）。

(1) この系を記述するラグランジアン Lを答えよ。
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(2) 単純に作ったラグランジアンには不要な項が含まれている。（あるラグランジアンLとそれ
に時間の完全微分が付け加えられた L′ = L+ df/dt は同等である。このようにラグランジアン
には任意性がある。）不要な項を除いたものを答えよ。

(3) オイラー・ラグランジュの運動方程式を答えよ。

注：結果として得られる方程式はかなり難解である。βと ωが一定の関係を満たすと共振現象がおきる。

4 ラグランジュ形式の力学（３）

この節の後半の問題は万有引力に関するもので，ニュートン力学による取り扱いになっている。教
科書 4章も参照のこと。

問 1 質量m1,m2の2つの質点がある。座標としてデカルト座標をとる。⃗r1 = (x1, y1, z1) = (q1, q2, q3),

r⃗2 = (x2, y2, z2) = (q4, q5, q6). ポテンシャルエネルギー U は一般には U = U(r⃗1, r⃗2)であるが，
これが座標の差にのみ依存するとする，つまり U = U(r⃗2 − r⃗1) であるとする。

(1) この系を記述するラグランジアン Lを答えよ。

(2) 重心座標 R⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

と相対座標 r⃗ = r⃗2 − r⃗1，および，全質量M = m1 +m2と換

算質量 µ =
m1m2

m1 +m2
を用いてラグランジアンを書き換え，運動方程式を答えよ。

以下では中心力，特に万有引力を考える。中心力のポテンシャルは相対座標の大きさr = |r⃗| = |r⃗2−r⃗1|
にのみ依存するので，問 1の結果から重心運動と相対運動が分離でき，重心運動は自明となる。そこ
で中心力の働いているときは，2体の運動を考察するには，相対座標で表される換算質量をもつ 1つ
の質点の運動を扱えばよいことになる。以下の問 2∼4 では，1つの質点の運動を主として考えるが，
考察の対象になっているのは，実際には，太陽と惑星とか地球とロケットといった 2体問題であるこ
とに留意されたい。

問 2 中心力のもとで運動する質量mの質点を考える。座標は r⃗ = (x, y, z)である。ポテンシャルエ
ネルギーは r = |r⃗|のみの関数 U(r)である。

(1) 座標としてデカルト座標を用いる。q1 = x, q2 = y, q3 = z. この系を記述するラグランジア
ン Lを答えよ。そして，オイラー・ラグランジュの運動方程式を答えよ。

(2) 座標として球座標を用いる。q1 = r, q2 = θ, q3 = ϕ. 2節の問 2参照。この系を記述するラ
グランジアン Lを答えよ。そして，オイラー・ラグランジュの運動方程式を答えよ。

(3) 初期条件として与えられる，ある時刻におけるこの質点の速度ベクトルと原点を含む平面
を考えると，中心力の性質から，質点の運動はこの平面内で行われる。そこで，この平面を xy

平面，あるいは，θ = π/2とすると，θ̇ = 0, sin θ = 1と運動方程式でおくことができる。[注
意：ラグランジアンでこの置き換えを行ってはいけない。] 項 (2)で得られた運動方程式は以下
となることを示せ。

mr̈ −mrϕ̇2 +
∂U

∂r
= 0 ,

d

dt

(
mr2ϕ̇

)
= 0 (1)

なお，ここでは以下の議論を明確にするため，座標としては r, ϕを使用する。

(4) 上で得られた式 (1)の第 2式は，括弧の中身が保存量であることを示している。この保存量
は何を表すか答えよ。
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問 3 万有引力のもとでの質量mの天体の運動を考える。中心にある重力源の質量をM，万有引力

定数をGとすると，U(r) = −GmM
r

となる。式 (1)の第 2式の保存量を ℓ = mr2ϕ̇とする。

(1) 式 (1)の第 1式に上記の保存量を代入した微分方程式を考える。軌道の形を求めるために，
rを ϕの関数と考え，時間微分を

d

dt
=
dϕ

dt

d

dϕ
=

ℓ

mr2
d

dϕ

で置き換える。さらに

ρ =
1

r

と変換する。その結果，式 (1)の第 1式は

d2ρ

dϕ2
+ ρ =

1

r0
(2)

となることを示せ。また，定数 r0をG,M,m, ℓを用いて答えよ。

(2) 式 (2)は単振動の方程式と類似のものなので，その解は容易に得られ，初期条件による定数
C1, C2を用いて

ρ =
1

r0
+ C1 cosϕ+ C2 sinϕ (3)

となる。ここで，ϕ = 0が近日点（rの極小となる位置）と仮定すると，式 (3)は

r =
r0

1 + e cosϕ
(4)

となることを示せ。ここで e = C1r0は初期条件に依存するパラメタである。

(3) ϕ = 0が近日点であれば，
d2r

dϕ2
>= 0 が成り立つはずである。このことから e >= 0 であるこ

とを示せ。

(4) 式 (4)の軌道がどのような形を現すか答えよ。

e = 0, 0.5, 1.0, 1.5の場合に，式 (4)の軌道がどのような形になるかグラフで示せ。簡単のた
め r0 = 1としてよい。Excel などのツールを使ってよい。

以上でケプラーの第 1，第 2法則が示された。

(5) 式 (4)の軌道で 0 <= e < 1 の場合に，周期 T を答えよ。周期とは軌道を 1周する時間，す
なわち，ϕ = 0から ϕ = 2π となる時間であるまた，軌道の長径 a（ϕ = 0と ϕ = πのときの位
置の差）を答えよ。そして，周期 T と長径 aの間の関係を答えよ。

周期は ℓ = mr2ϕ̇ の関係式から計算でき，次の積分公式を利用して良い。∫ 2π

0

dx

(a+ b cosx)2
=

2πa

(a2 − b2)3/2
(a > |b|)

以上でケプラーの第 3法則が示された。

問 4 万有引力のもとでの質量mの天体の運動を考える。中心にある重力源の質量をM，万有引力

定数をGとすると，U(r) = −GmM
r

となる。
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このとき，

A⃗ =
1

m
p⃗× ℓ⃗− GmM

r
r⃗ (5)

で定義されるベクトルが保存する

(
dA⃗

dt
= 0

)
ことを示せ。p⃗, ℓ⃗は運動量，角運動量である。

ヒント： 教科書の式 (A.31)， dr⃗/dt = p⃗/m，dp⃗/dt = F⃗ などを活用せよ。

参考：このベクトルは Runge-Lenzベクトル（ Laplace-Runge-Lenzベクトルともいう）と呼ばれ，中

心力で距離の逆自乗に比例する力（万有引力やクーロン力）に特有の保存量であり，このような力に隠

されたある対称性を表す。量子力学において水素原子のエネルギーレベルに現れる通常の角運動量だけ

では説明できない縮退はこの対称性に起因する。

問 5 万有引力のもとで 3つ以上の物体が運動しているときの解は「3体問題」と呼ばれ一般には解
析的に解けない。以下では，条件を限定して，ラグランジュ点（L1, L2, L3, L4, L5）と呼ばれ
る安定点（厳密には安定ではない）の位置を調べる。

G
m1 m2

a
r1 r2

A

B

図 8: 天体A, Bの軌道

3つの天体をA(質量m1），B(質量m2），X(質量m）とする。第 3の天体Xの質量は他の 2つ
に比べて小さく（m1 ≫ m, m2 ≫ m），その重力が他の 2者には影響を与えないと仮定する。
また m1 > m2としておく。イメージとしては，地球，月，人工衛星といった組を想定された
い。A, Bの質量の和をM = m1 +m2とする。質量比を α =

m2

m1
，A, Bの間の距離を aとす

る。3つの天体が相対位置を相互に変化させずに，ある平面内で円運動を行う解を探す。この
ことは 3つの天体の円運動の角速度 ω0が同一であることを意味する。以下で図は，この 3つの
天体が運動する平面を表す。

(1) まず，図 8にあるように，天体 A, Bのみを考える。点 Gは両者の重心である。両者は G

を中心として，それぞれ半径 r1, r2で同一の角速度 ω0で円運動をしている。従って，相対位置
は変化せず，a = r1 + r2は一定である。

i) m1,m2, r1, r2の間の関係式を答えよ。

ii) 角速度の自乗 ω2
0 をG,M, aを用いて答えよ。

(2) 直線解とよばれるものを考える。質量mの天体Xが天体A, B と直線をなして相対位置を
変えずに存在できる場所が図 9に示す L1, L2, L3 と 3つある。それらの位置を，図に示すよう
に，天体 Aあるいは天体 Bからの距離 x1, x2, x3で表す。その位置は，天体 Xが A, Bと同じ
角速度 ω0で重心Gのまわりを円運動する条件から決まる。
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x1 = zaとおくと，L1の位置を決める zは

1

(1− z)2
− α

z2
= 1− (1 + α)z

という方程式の解であることを示せ。

さらに， L2, L3 について，上でで示したものと同じような位置を決める方程式を答えよ。

注：この方程式は，z の高次方程式のため，閉じた形では解けないが，2つの天体の質量比 αの数値を

与えれば zの値は数値的に求めることができる。αの値をいくつか与えて，そのときの zを求めてみる

ことを勧める。情報処理演習の 11章などを参照されたい。

G

m1 m2

a
r1 r2

A BL1 L2L3 x2x3 x1

図 9: ラグランジュ点，直線解 L1, L2, L3

G
m1 m2

a
r1 r2

A B

X m

R2

R1

F⃗1

F⃗2

R

図 10: ラグランジュ点，三角形解 L4

(3) 三角形解とよばれるものを考える。質量mの天体Xが天体A, B と三角形をなして相対位
置を変えずに存在できる場所が L4, L5 と 2つあり，L4を図 10に示す。（L5 はこの図の下のほ
うの対称な位置である。）その位置は，天体Xが同じ角速度 ω0で重心Gのまわりを円運動する
条件から決まる。XA = R1, XB = R2, XG = R とし，

−→
XA = r⃗1,

−→
XB = r⃗2,

−→
XG = r⃗ としよう。

i) r⃗を r⃗1, r⃗2,m1,m2を用いて答えよ。

ii) 図で F⃗1, F⃗2は天体 Xに天体 A, B から働く万有引力を表す。上記の解が存在するためには，
天体 Xに働く力のベクトルが重心 G を向いていなくてはいけない。スカラー量 C を用いて
r⃗ = C(F⃗1 + F⃗2)となることから，R1 = R2を導け。

iii) 前項で C も決まる。天体Xの角速度が ω0であることから，R1 = R2 = aを導け。

結果として 3つの天体は正三角形を構成して相対的に位置を保ち運動する。

5 変分法

ラグランジュ形式の力学を定式化するときに変分法と呼ばれる数学を用いた。この節ではそれに関
係した演習問題を取り上げる。
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要点を簡単に記述しておく。関数とは数値から数値への対応を与えるものであるが，汎関数とは
関数から数値への対応を与えるものである。ここでは以下のような汎関数を考える。

F [y] =

∫ b

a

G(x, y, y′, · · ·)dx (6)

この汎関数は関数 y = f(x)を INPUTとして，数 F [y]を OUTPUTとして与える。関数記号と
区別するために引数を [ ]で表している。Gは（任意の）多変数関数である。

内容としては，固定境界条件に限定する。また，2階微分以上の高階微分は含まないものとする。

以下では 1つの関数 y = f(x)の汎関数の場合を示すが，複数の関数の汎関数の場合（つまり，G
が G(x, y1, y2, . . . , y

′
1, y

′
2, . . .)となるとき）も同様である。そのときは，関数の数だけオイラー方

程式ができる。

変分法

関数 y = f(x)の x = a, bでの値 y1 = f(a), y2 = f(b)を固定した条件で次の汎関数

F [y] =

∫ b

a

G(x, y, y′)dx (7)

の極値を与える関数は，次のオイラー方程式の解である。

d

dx

(
∂G

∂y′

)
− ∂G

∂y
= 0 (8)

（注意：y′は yの微分であるが，オイラー方程式を計算するときは，yと y′は独立な量としてGを
偏微分する。オイラー方程式を具体的に計算する段階では，もちろん，y′ = dy/dxとしてよい。）

条件付変分法と未定乗数法

関数 y = f(x)の x = a, bでの値 y1 = f(a), y2 = f(b)を固定した条件で汎関数 式 (7) の極値を考
えるが，そのとき，

F1[y] =

∫ b

a

H(x, y, y′)dx = c =定数 (9)

という束縛条件がついているとする。（束縛条件は複数あってもよいが，ここでは 1つとする。）
このときは次の手順で，その極値を与える関数を求める。

1. G̃を次式で定義する。
G̃ = G+ λH (10)

ここで，λはラグランジュの未定乗数と呼ばれる未定の定数である。（束縛条件が複数あるときは，
その数だけ未定乗数を導入し，G̃ = G+ λ1H1 + λ2H2 + · · ·+ λnHn とする。）

2. G̃を Gと考え，束縛条件のない変分法を適用するとオイラー方程式（式 (8)）が得られる。そ
れを解く。

3. 得られた解は未定乗数 λを含んでいる。その解を式 (9)に代入すると，λに関する方程式にな
るので，それを解いて λの値を決定する。（λの値はもちろん cに依存する。）

4. オイラー方程式の解に上の結果を代入して λを消去したものが，最終的な解である。

問 1 図 11の平面内での光の経路を考える。図の上の媒質 1，下の媒質 2では光の速度が，それぞれ，
v1および v2である。光が点Aから点 Bに進むときの，光線の経路を考える。AC, BD は境界
面に垂直であり，距離 a, b, cは図で定義されている。

(1) 上下のそれぞれの領域では光線は直進する。境界面で点 Pを光が通るとする。CP= xとす
るとき，光が点Aから点 Bに進むときの時間 T を a, b, c, x, v1, v2 を用いて答えよ。

(2) Fermatの原理「２点間を通る光の経路はその間の伝播時間が最小となる線である」が成り

立てば，光の経路は
dT

dx
= 0から決まるはずである。これから次の屈折の法則を導け。角度α, β

は図 11に定義されている。
sinα

sinβ
=
v1
v2

(11)
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α

β

A

B

C

DP

a

b

x

c− x

c

媒質 1

媒質 2

v1

v2

図 11: 光の屈折

問 2 次の量 Aがある。関数 y = f(x)は境界条件として，f(0) = 0, f(a) = b (a > 0, b > 0)をみ
たす。

A =

∫ a

0
(yy′)2dx

(1) Aの極値を与える関数 y = f(x)を答えよ。（ヒント：微分方程式が解けないときは，(yy′)′

を計算してみよ。）

(2)上で求めた極値は極大ではなく極小である。その理由を考えて，できるだけ簡明に説明せよ。

問 3 次の量A,Bがある。関数 y = f(x)は境界条件として，f(−a) = 0, f(a) = 0をみたす (a > 0)。

A =

∫ a

−a
(yy′)2dx, B =

∫ a

−a
y2dx

kを正の定数とし，B = kの条件のもとで，Aの極値を与える関数 y = f(x)を答えよ。（ヒン
ト：微分方程式を解くときは問 2のヒント参照。）

x

y

O

P

Q

(1) (2)

x x+∆x

y

y +∆y

A

a

h

y = f(x) ∆s

図 12: (1)最速降下線， (2)曲線の一部を線分で近似

問 4 図 12はある鉛直面を表す。この斜面内にある曲線（坂道の断面）を考える。図 12(1)にあるよ
うに y軸は下向きにとる。点O(0, 0)と点A(a, h)は固定された点であり，質点は摩擦なしに点
Oから点Aまで滑り降りる。点Oでの速度は 0とする。滑り降りる時間が最も短くなるような
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斜面の形状を最速降下線という。それを表す関数 y = f(x)を求めたい。重力加速度の大きさを
gとする。

(1) OとAを結ぶ直線を斜面とした場合の落下時間 T0を答えよ。

(2) 図 12(2)に示す点P, Qは関数 y = f(x)上の非常に近接した 2点を拡大して示している。関
数 y = f(x)はこのようなを微小な線分の集まり（折れ線）で近似できる。点Pにおける質点の
速さを y, gを用いて答えよ。

(3) 微小な距離なので，PQの上での質点の速さは一定と見なせる。線分PQを質点が移動する
のに要する時間を y, g,∆x,∆yを用いて答えよ。

(4) 点Oから点Aまで質点が滑り降りるのに要する時間 T は前項で求めた時間の総和である。

∆x,∆y を無限小とした極限をとり，
∆y

∆x
= y′とみなして，T をxについての積分の式で答えよ。

(5) 点Oから点Aまで質点が滑り降りるのに要する時間 T を最小とする斜面の形状を表す関数
y = f(x)を答えよ。（ヒント：この節末尾の「数学的補遺 ⟨1⟩」を参照すること。式 (12), 式 (13)を活

用する。オイラー方程式は式 (14)の形になる。微分方程式を解く方法はいろいろあるが，y′ = cot(θ/2)

と変数変換することを利用する方法がある。）

(6) 点Oから点 Aまで質点が滑り降りるのに要する時間 T を a = πr, h = 2rの場合に答えよ
（rは定数）。そして，(1)の直線の斜面の場合の落下時間との比を求め，最速降下線の場合何%

速くなるか答えよ。

問 5 図 13(1)のように，2点 (−a, b), (a, b)を結ぶ曲線 y = f(x)を考える (a > 0, b > 0)。この曲線
は y > 0の領域にあるものとする。その曲線を x軸のまわりに回転させてできる回転体の表面
積（側面積）を考える。この面積を最小とするような曲線の形を決定したい。

(1) ∆xを微小な長さとして，この曲面の x ∼ x+∆xの間の面積を y,∆s を用いて答えよ。問
4の図 12(2)に関する説明を参考とせよ。∆sは図に定義されている。

(2) 回転曲面の面積 Sを xについての積分の式で答えよ。

(3) 面積 Sを最小とする関数 y = f(x)を答えよ。（ヒント：この節末尾の「数学的補遺 ⟨1⟩」を参
照すること。式 (12), 式 (13)を活用する。オイラー方程式は式 (14)の形になる。微分方程式を解く方法

はいろいろあるが，「数学的補遺 ⟨2⟩」の双曲線関数を用いて Cy = cosh t, y′ = sinh tと変数変換するこ

とを利用する方法がある。）

なお，解が意味を持つために a, bの大きさの間に適切な関係があるとする。

（参考）石鹸膜は表面張力のため，できるだけ膜の面積が小さくなるような形をなす。だからシャボン

玉は球面となる。半径 bの円形の枠を 2つ並行に距離 2aで相対させ，その間に石鹸膜を張る。この問で

得られるものがその膜の形である。

問 6 −a < x < a で y > 0 である関数 y = f(x)を考える。この関数は x = −a, x = +a で x軸と交
差するとする。つまり f(−a) = f(a) = 0である。この関数と x軸で囲まれる面積 Sを最大と
したい。ただし，x = −a ∼ x = +aまでの曲線の長さ Lは一定値 ℓであるとする（ℓ > 2a）。

(1) 面積 Sおよび長さ Lを与える xについての積分の式を答えよ。

(2) 長さが一定の条件のもとで，面積を最大とする曲線を答えよ。

問 7 一様な線密度 ρで長さ ℓの綱（あるいは鎖）がある。（線密度とは長さあたりの質量である。）
綱は伸び縮みしないとする。鉛直な壁の 2点（釘など）に両端をとりつけたときの綱の形を懸
垂線と呼ぶ。これを決定したい。重力加速度の大きさを gとする。
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x

y
(1)

a

b

−a

y = f(x)

(2)

x
a−a

y

b

y = f(x)

図 13: (1)回転曲線面。この関数を x軸の周りに回転する。 (2)懸垂線

ここでは両端の位置は同じ水平線上にあると仮定する。図 13(2)に示すように座標軸をとる。両
端の位置（釘）は (−a, b), (a, b)であるとしよう。また，綱の長さは ℓとする。(ℓ > 2a)

(1) 綱の重力のポテンシャルエネルギー（位置エネルギー）を U とする。ここでポテンシャル
エネルギーは y = 0でゼロとする。U を表す xについての積分の式を答えよ。（問 4と同じよう
に考えよ。）

また，綱の長さ Lを積分で表す式を答えよ。（問 6と同じである。）

(2) 綱の形は重力のポテンシャルエネルギー（位置エネルギー）が最も小さくなったときが安
定であると考えられる。L = ℓを一定として U を極小とすることから，綱の形を表す関数を答
えよ。（ヒント：問 5のヒント参照。）

数学的補遺
⟨1⟩ 良く現れる以下の量を σという文字で表す。

σ =
√
1 + (y′)2, σ2 − (y′)2 = 1 (12)

これの微分は以下のように扱える。

∂σ

∂y′
=
y′

σ
,

dσ

dx
= σ′ =

y′y′′

σ
(13)

さて，次の微分方程式を考える。ここで αは定数である。

yy′′ − ασ2 = 0 (14)

この式 (14)は次式と等価である。 (
σ

yα

)′

= 0 (15)

よって，
σ = Cyα (C は積分定数) (16)

となる。この式は y′ = · · ·と変形すれば，もう一度積分できるのでそれから式 (14)の解が決まる。

⟨2⟩ 以下で定義される関数を双曲線関数とよぶ。三角関数と似た性質を持つ。

coshx =
1

2
(ex + e−x), sinhx =

1

2
(ex − e−x), tanhx =

ex − e−x

ex + e−x
. (17)

次のような三角関数と類似の性質がある（確認せよ）。加法定理なども同様に導かれる。

(coshx)2 − (sinhx)2 = 1 tanhx =
sinhx

coshx
. (18)

(coshx)′ = sinhx, (sinhx)′ = coshx, (tanhx)′ =
1

(coshx)2
. (19)
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Part-2 剛体の力学

6∼8節で，必要であれば重力加速度の大きさは gとする。「一様な」とは密度が一定であることを
意味する。棒や球などの基本的な形の一様な物体で，教科書などに記述されている慣性モーメントは，
その式を利用してよい。期末試験の場合，必要な慣性モーメントの公式は問題文に与える。
図のない問もあるが，剛体の演習で図は必須である。問題文を正確に読み，それに従って図を描く
ことも演習の一部である。

6 剛体を記述する量

問 1 以下の剛体の重心の位置を求めよ。

(1) 一様な薄い直角三角形の板。直角をなす辺の長さは aおよび bである。

(2) 一様な薄い扇形の板。半径は r，中心角は θである。

(3) 薄い一様な円錐面。円錐面とは直円錐から底面の円と内部を除いた面である。半径は r，高
さは hである。

(4) 中心が原点で半径 rの球体を考えたとき，その x >= 0, y >= 0, z >= 0の部分。つまり球の 8

分の 1の一様な物体である。

(5) 中心が原点にある半径Rの一様な球。この球には (R/2, 0, 0)，(0, R/2, 0)，(0, 0, R/2) を中
心とする 3つの半径 rの球の形をした穴がある（r < R/8）。

問 2 図 14に示す剛体の，指定された軸のまわりの慣性モーメントを答えよ

(1) 細い一様な質量M の棒を 4本組み合わせた正方形。回転軸は正方形の中心Oをとおり正方
形のなす面に垂直な直線。

(2) 一様な質量M の薄い板。上辺は半径が bの半円で下辺は半径が aの半円である。回転軸は
半円の中心Oをとおり板のある面に垂直な直線。

(3) 一様な質量M の円錐台。上面は半径 aの円，下面は半径 bの円，高さは h。回転軸はそれ
ぞれの円の中心O1と O2 をとおる直線。

a

a
O

(1)

O
a

b

(2) (3)

a

b
O2

O1

h

図 14: (1)正方形をなす 4本の棒， (2)板， (3) 円錐台

問 3 剛体を，相互の位置関係が不変な，n個の質点の集まりとみなす。それらの質点の質量と位置
をm1, m2, . . . , mn，r⃗1, r⃗2, . . . , r⃗n とする。以下では，n個の質点に対する和が必要なときは

和記号
n∑

k=1

を使うものとし，これを単に
∑
と略記してよい。各位置ベクトルを成分で表すとき

は r⃗k = (xk, yk, zk) とする。
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(1) 剛体の全質量M，および，重心の位置ベクトル R⃗を答えよ。

(2) R⃗ = 0となるように座標軸が選ばれているとする。このとき，z軸のまわりの慣性モーメン
ト IG，および，(a, 0, 0)を通り z軸に平行な軸のまわりの慣性モーメントを Iとする（a > 0）。
IG および I を答えよ。それから，平行軸の定理 I = IG +Ma2が成り立つことを示せ。

(3)剛体が板状であるとする。重心の位置の条件はない。剛体がxy面にあるとして，zk = 0 (k =

1, . . . , n)とする。x, y, z軸のまわりの慣性モーメントを，それぞれ，Ix, Iy, Izとする。Ix, Iy, Iz
を答えよ。それから，直交軸の定理 Iz = Ix + Iy が成り立つことを示せ。

問 4 質量M，半径 r，高さ hの一様な円柱がある。図 15の左の図のように，回転軸を円柱の重心O

をとおり，円柱の中心軸に垂直な直線としたとき，この回転軸のまわりの慣性モーメントを以
下の手順で計算せよ。

(1) まず，質量がmで半径が rの薄い円板を考える。図 15の中央のように，円板の中心をとお
り，円板と同一の面内にある直線を考えたとき，この回転軸のまわりの慣性モーメントを前の
問の (3)の直交軸の定理を利用して答えよ。なお，円板の中心をとおり，円板に垂直な回転軸

のまわりの慣性モーメントは
1

2
mr2である。

(2) 円柱を多数の薄い円板に分割して考える。図 15の右のように，重心Oからの距離が xで厚
みが∆xの円板を考える。平行軸の定理を使って，図の重心Oをとおる回転軸のまわりの慣性
モーメントを答えよ。

(3) 図の重心Oをとおる回転軸のまわりの円柱の慣性モーメントを答えよ。

h

r

O O
x

P

x

回転軸 回転軸M
m ∆x

図 15: 円柱の慣性モーメント

問 5 以下の問に答えよ。

(1) 質量m，半径 rの薄い球面がある。この球面の中心をとおる回転軸を考えるとき，この球
面の慣性モーメント I を求めたい。

質量M 半径 rの球の慣性モーメントを I1，質量M +∆M 半径 r +∆rの球の慣性モーメント
を I2とする。両者の密度が同一であれば，I = I2− I1とし，∆M をmとみなせば計算できる。

∆r,∆M を微小量として，I をm, rを用いて答えよ。

(2) 質量M，半径Rの密度が一様ではない球がある。その密度 ρは中心からの距離 rに比例す
る。ρ = Crとするとき，C をM,R, V を用いて答えよ。ここで V は球の体積である。

(3) 上の (2)で与えられた球の中心をとおる回転軸のまわりの慣性モーメントをM,Rを用いて
答えよ。
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問 6 以下の問に答えよ。

(1) 質量がM の一様な薄い楕円形の板がある。板は xy面上にあり，外周は
x2

a2
+
y2

b2
= 1であ

る（a > 0, b > 0）。この板の面積を答えよ。

(2) 前問 (1)の楕円形の板を考える。z 軸を回転軸とするとき，この板の慣性モーメントを答
えよ。

(3) 質量がM の一様な楕円体がある。楕円体の表面は
x2

a2
+
y2

b2
+
z2

c2
= 1である（a > 0, b >

0, c > 0）。この楕円体の体積を答えよ。

(4) 前問 (3)の楕円体を考える。z 軸を回転軸とするとき，この楕円体の慣性モーメントを答
えよ。

問 7 質量M の剛体に働く重力は，実際には剛体の各部分に作用するが，それをまとめて，剛体の重
心にMgの力が働くと考えてよいとされている。その理由を説明せよ。（問 3の考え方や結果
を利用してよい。）

7 剛体の静力学

問 1 図 16(1)のように，なめらかな水平面上に辺の長さが aの正方形の形をした，質量M の一様な
薄い板がある。正方形ABCDの頂点A, Cに図の向きの同じ大きさ F の水平な力を加えた。こ
のままだと，この板は動いてしまうので，他の力をさらに加えて板を静止させたい。加える力
は水平で正方形の縁の適切な位置に加えるものとする。以下の 2つの場合について，必要な力
の大きさと加える位置を答えよ。静止できない場合は「解なし」と答え，その理由を説明せよ。

(1) 1つの力を加える場合

(2) 2つの力を加える場合

(1)

F

F

AB

C D

F
θ

O

A B

(2)

M

M

図 16: (1)平面上の正方形の板， (2)平面上の立方体

問 2 図 16(2)のように，あらい水平面上に辺の長さが a，質量M の一様な立方体がある。図は立方
体の中心をとおり側面に平行な鉛直面を表している。以下で，力はこの鉛直面内にあるとして
よい。点 A, B は鉛直面内にある立方体の断面の正方形が水平面と接する頂点である。図のよ
うに大きさ F で水平方向と角度 θをなす力を加えた。0 <= θ <= 45◦とする。

(1) 立方体は動かないとする。このとき，水平面からの抗力が 1点にかかっていると考えた場
合，その抗力の大きさと作用点の位置を答えよ。

(2) 力の大きさを少しずつ大きくしていったところ，力の大きさが F1を超えたとき，点Aを中
心として立方体が回転を始めた。F1を答えよ
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(3) 上記の (1), (2) のような現象がおきるとき，立方体と水平面の間の静止摩擦係数の下限を
答えよ。

問 3 一様な材質で質量M，半径 rの円板形の板に 3本の長さ hの脚のついたテーブルが水平な床の
上にある。テーブルの厚さ，脚の質量と太さは無視できるものとする。図 17は，左がテーブル
を横から，右がテーブルを上から見た図である。図 17のように，3本の脚は正三角形をなすよ
うに点A, B, Cの位置にとりつけられている。点Oは円の中心である。

(1) 点 B, C の中点に質量mのおもりを置いた。それぞれの脚が床面から受ける抗力の大きさ
を答えよ。

(2) このおもりをAOの延長線に沿って，すこしずつテーブルの外周のほうに移動させたとき，
ある位置でテーブルが転倒した。このようなことが起きるためには，おもりの質量はある値以
上である必要がある。その値を答えよ。

(3) おもりの質量を (2)で求めたものの 2倍とする。このおもりをAOの延長線に沿って，すこ
しずつテーブルの外周のほうに移動させたとき，テーブルが転倒するときのおもりの位置を点
Oからの距離で答えよ。

M
r

h

A

B C

O

床

図 17: 円板形の 3本脚のテーブル

問 4 図 18のように，質量M1，半径 r1の球と質量M2，半径 r2の球を伸び縮みせず質量の無視で
きる長さ Lの糸で結びつけ，その糸を水平な釘（点O）にかけた。糸と鉛直方向のなす角度を
θ1, θ2とする。球は一様な材質であり，釘と糸の間の摩擦はない。糸の張力の大きさをT で表す。

この系が静止しているとすると，2つの球を 1つの剛体と考えて分析してよいことを注意して
おく。球と球の間の抗力は互いに相殺するだけだからである。

(1) 水平方向の力の釣り合いを表す式を答え，θ1, θ2の間の関係式を答えよ。

(2) 鉛直方向の力の釣り合いを表す式を答え，張力 T の大きさをM1,M2, g, θを用いて答えよ。

以下は θ2を用いず，θ1を単に θと表記して答えよ。

(3) 糸の長さで釘の左側の部分の長さを xとして，点Oのまわりの力のモーメントの釣り合い
を表す式を答えよ。

(4) cos(θ1 + θ2)を L, r1, r2,M1,M2を用いて答えよ。三角形OABに余弦定理を使う。

問 5 質量M，長さ Lのはしごが水平なあらい地面から，鉛直ななめらかな壁にたてかけられてい
る。はしごと地面のなす角度は 60◦である。はしごと地面の間の静止摩擦係数は 0.5 で，はし
ごと壁の間の摩擦力は無視するものとする。

このはしごを質量が 5M の人がゆっくりと登っていく。この人がどこまではしごを登ることが
できるか答えよ。はしごは一様な細い剛体であり，人の大きさは無視できると仮定せよ。
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A Br1
r2

M1

M2

θ1 θ2

図 18: 糸でつながれて釘に吊るされた 2つの球

問 6 質量M，半径R，高さHの一様な薄い円筒面（円柱の側面）が水平面の上に置かれている。そ
の中に半径 r，質量mの 2個の一様な球が入れられている（R < 2r < 2R < H）。図 19は，2

つの球の中心と円筒の中心軸を含む鉛直面である。点 P, Qが 2つの球の中心，点 Aが下の球
と水平面の接点，点 B, Cが球と円筒面の接点である。θは PQと水平方向のなす角度である。
接触点での摩擦力はないものとする。これが安定であるための条件を求めたい。

(1) 安定であれば，2個の球を一体として考えてよい。2個の球が静止している条件から，点B,

Cにおける抗力の大きさをm, g, θ を用いて答えよ。

(2) 円筒面が静止するための条件をM,m,R, r,H を用いて答えよ。

2R

r

r

A

B

C

P

Q
H

θ

m

m

M

図 19: 円筒と 2個の球

問 7 一様で薄い n枚の同一の板を向きをそろえて水平な面の上に重ねて置く。板はすべて長さが 2L

で位置を示すために図 20のように板の向きに x軸をとる。それぞれの板の重心の位置座標を
上から x1, x2, . . . , xnとする。一番下の板の位置を原点にとるので xn = 0となる。

図 20(1)の場合，x1 < Lでは安定で，x1 > Lでは不安定になることは分るであろう。この境界
の値（x1 = L）は不安定なつりあいであるが，他の場合も含め，このようなケースは安定に含
めることにして以下を議論する。

(1) 図 20(2)の場合に，これらの板が安定であるための条件式を x1, x2, Lを用いて 2つ答えよ。
（x3 = 0であることに注意。）それぞれの条件式が何を意味するかも答えよ。そして，3枚の板
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が安定であるときに，一番上の板の右端の位置の最大値を答えよ。

(2) 板の枚数が nであるときに，これらの板が安定であるための条件式の組がどのようなもので
あるか答えよ。（全部答えるのは無理なので，説明がつくような最初のいくつかと最後のいくつ
かを示せばよい。）n枚の板が安定であるときに，一番上の板の右端の位置の最大値を答えよ。

(3) n枚の板が安定であるときに，一番上の板の右端の位置の最大値を考える。n = 100のとき

と，n = 1000のときを比べると，この最大値はどの程度異なるか
∫ x

1

1

x
dx = log x を活用して

概算し，その値を答えよ。

x x
x2 x1−L L x2 x1x3

(1) n = 2 (2) n = 3

図 20: 板を重ねる。(1)2枚のとき， (2)3枚のとき

8 剛体の動力学

問 1 図 21のように，定滑車に 2つのおもりがひもでかけられている。定滑車は質量M，半径 rの一
様な円板とみなせ自由に回転できる。おもりの質量は，それぞれ，m1,m2である（m1 < m2）。
ひもは伸び縮みせず，質量は無視でき，定滑車とのあいだですべりは生じない。おもりが滑車
に接触する前の運動を考える。

(1) おもりの加速度の大きさを aとし，糸の左右における張力の大きさを T1, T2とするとき，2

つのおもりと，定滑車の運動方程式を答えよ。

(2) aを M,m1,m2, gを用いて答えよ。

M

m1

m2

r

図 21: 定滑車と 2つのおもり

問 2 質量m，長さ Lの細い一様な棒が水平面上に直立している。時刻 t = 0に，この棒が初速度ゼ
ロで倒れ，回転をはじめた。棒と鉛直方向のなす角度を ϕとする。

(1) この棒の水平面上の端点が動かなかったとき，棒が水平面に達する直前の棒の先端の速さ
を答えよ。

(2) この棒が ϕ = ϕ0となったときに，水平面上の端点が動き始めた。棒と水平面の間の静止摩
擦係数を µとするとき，µを ϕ0を用いて答えよ。
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問 3 質量m，長さLの細い一様な棒の一端を天井にとりつけ，もう一端には質量M，半径 rの一様
な球を固定する。（球の表面に棒の端を接合する。）rは Lよりも十分小さい。棒は天井にとり
つけられた点を中心として自由に回転できる。ある鉛直面内で，この棒と球が Lより十分振幅
の小さい振動をするとき，その周期を答えよ。

問 4 同一の缶コーヒーが 2缶ある。外形はほぼ半径 rの円柱である。一方はそのまま，一方は中身
を飲み干した。水平方向に対して一定の角度 θをもつ十分幅のある斜面の上で，この 2つの缶
を同じ高さから静止状態で放したところ，両者ともすべらずに転がり下りた。

どちらが先に斜面の下に到達するか，理由を明確に述べた上で答えよ。

問 5 ジャイロスコープのはずみ車のモデルを考える。均質な円柱形の物体に質量の無視できる心棒
ABがとりつけられていて，図 22のように，自由に重心のまわりに回転している。点Aと点B

は円柱の重心から等距離にある。

x軸を紙面右手方向，y軸を紙面に垂直で奥向き，z軸を紙面上向きとする。円柱の中心軸は z

軸に平行で，x, y軸に直交している。

回転したまま重心の位置は変えずに，この物体の向きを次の (1), (2)のように変えるには，そ
れぞれ，点Aと点Bにどちら向きの力を加えればよいか考えよ。以下の文章は，力を加え始め
るときの様子である。空欄に適切なものを記入せよ。

(1) 回転軸を右にたおす。つまり
−→
BAが x軸に平行になるようにする。

(2) 回転軸を紙面に垂直になるようにする。つまり
−→
BAが y軸に平行になるようにする。

押し始めは，点Aに大きさ F の力を 向きに，点 Bに大きさ F の力を

向きに加える。
そして動き始めても，心棒に対して垂直に同じ向きで力を加え続ける。

A

B

x

y

z

図 22: 回転するはずみ車

ヒント：剛体の回転運動の運動方程式は，角運動量を L⃗，力のモーメントを N⃗ とす
ると

dL⃗

dt
= N⃗

である。この基本に基づき考える。
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問 6 単位長さあたりの質量が ρの十分長い細い鎖があり，水平面の上に置かれている。この鎖の一
端を鉛直方向に持ち上げる。水平面にある部分の鎖は静止しており，鎖の鉛直に持ち上げられ
ている部分の速さは一定で vであるとするとき，この鎖を持ち上げるのに必要な力を f とする。
vを一定としているので，f は一定ではない。鎖の鉛直に持ち上げられている部分の長さを xと
して，f を ρ, g, v, xを用いて答えよ。

問 7 あらい水平な床面を，質量M，半径 rの一様な円柱が図 23のように向きを変えずに運動する。
図は円柱の重心Oをとおり，円柱の中心軸に垂直な鉛直面である。重心の右向きの速度を v，時
計回りの角速度を ωとする。円柱と床面の間の動摩擦係数を µとする。

この円柱に t = 0において v = v0, ω = ω0の速度および角速度が与えられた。その後の運動を
答えよ。なお，v0 > 0 であるが，ω0の符号は正負いずれもありうるとする。

r
O

M
ω

v

図 23: 平面を運動する円柱
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Part-3 熱力学

9∼12節の文章で「温度」は特に指示がなければ絶対温度を表す。

9 熱力学の基礎

問 1 「示強性の量」，「示量性の量」とはどのような意味か述べよ。また気体に関係した物理量の中
から，両者に属するものをそれぞれ 3つ以上挙げよ。

問 2 鉄の原子量は 55.8である。鉄 10kgの中には鉄の原子が何個あるか。

室温の鉄の密度は 7.86g/cm3である。仮に鉄の原子が格子状に等間隔に並んでいると考えた場
合，鉄の原子の間隔はいくらと推定されるか。

問 3 物質の物性値とは，その物質の特性を表現する量でさまざまなものがある。例えば「密度」は
物質が重いのか軽いのかの指標であるが，大きければ重いのは当たり前なので，密度は「質量
を体積で割ったもの」と定義される。同じ体積で比べることにより物質の軽重が判断できる。

「熱伝導率 κ」という量を定義することを考える。熱伝導率が大きければその物質は熱をよく
伝え，小さければその物質は熱をあまりよく伝えない。この熱伝導率を図 24に示すような状況
で定義しよう。面積 S厚み dの試料物質が温度 T1と温度 T2の熱容量の大きな物体にはさまれ
ている（T1 < T2）。この状態が時間的に定常に保たれているとき，時間 tの間に高温側から物
質に熱量Qが流れ込み，物質から低温側に熱量Qが流出した。

T2T1

S

QQ

d

試料物質
経過時間 t

図 24: 熱伝導率

(1) 図や本文に表れた量の中から必要なものを用いて熱伝導率 κの定義式を答えよ。

(2) 上の定義式を考える際，熱の移動について，妥当なこととして仮定したことがいくつかあ
るはずである。そのような事項を列挙せよ。

問 4 下の式 (20)は，実在気体の状態方程式としてよく使われるファン・デル・ワールスの状態方程
式である。気体の量は 1 molであるとする。ここで a, bは正の定数で気体の性質に依存する量
である。

(
p+

a

V 2

)
(V − b) = RT (20)

(1) a = 0, b = 0とするとこの状態方程式は何を表すか答えよ。

(2) SIでは a, bの単位は何か答えよ。
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(3) 式 (20)を温度 T が一定という条件で pV 図（横軸 V，縦軸 p）で表したい。概形を知るた

めに，
dp

dV
を求めよ。

(4) 以下では，V > bの領域を考える。温度 T の値により，(A) V > bで
dp

dV
= 0となる V が

存在しない場合，(B) V > bで
dp

dV
= 0となる V が 2つある場合がある。(A), (B) それぞれの

場合について pV 図を描け。

(5) 上の (A), (B) の境界となる温度を臨界温度 Tcと呼ぶ。これを定めるために，次のように考

える。上で描いた pV 図から臨界温度では
dp

dV
= 0および

d2p

dV 2
= 0 となる Vcが存在する。Vc

を答えよ。その Vcを
dp

dV
= 0に代入し臨界温度を答えよ。

(6) T < Tc以下の状態は (B)の図で表されるが，このとき，実際にはどのような現象が起きて
いるか考察せよ。

問 5 気温は 100m 高度が上がるごとに約 0.6◦C 低くなると言われる。地上付近の暖められた空気が
上昇しながら断熱的に膨張すると考えることでこの値を説明する。空気を単一成分の理想気体
と仮定する。地上を原点とした上向きの座標を z とする。空気の圧力 p，温度 T，密度 ρは z

の関数となる。重力加速度の大きさ g は考えている範囲で一定とする。

(1) 空気のある位置での圧力 p は自分自身の上にある空気に働く重力で決まる。図のような厚
みが∆zで上下の面が z軸に平行な空気のかたまりを考え，z と z +∆z の間の圧力差を考え

る。
dp

dz
を答えよ。

z

z +∆z

(2)断熱変化であることから，
dT

dp
を答えよ。断熱変化の場合の温度と圧力の関係は

T γ

pγ−1
=一定

である。ここで γは比熱比である。

(3)
dT

dz
を答えよ。

(4) 地上での空気の密度，圧力，温度，比熱比の値をそれぞれ 1.2kg/m3, 1.0 × 105Pa, 300K,

1.4 として，前項の式から，地上付近では 100m 高度が上がるごとにどれだけ温度降下がある
と推定されるか，その数値を答えよ。

(5) 前項の数値は上記の値 ( 0.6◦C ) より少し大きい。実際の値との差の原因を推定せよ。

問 6 以下の考察から音速 c を計算せよ。

図 25のように断面積 S の管に理想気体が詰まっており，それをピストンで押すことを考える。
気体の密度を ρ ，分子量を M ，温度を T ，比熱比を γ とする。気体定数は R である。簡単
のため，すべての分子は静止していると考える。(正確には熱ですべての分子は乱雑な運動をし
ているが，平均すれば右と左に動く分子の数は同数程度である。この平均的な速度分布からの
ずれが音波になる。)
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t = 0 にピストンは位置Aにあり，一定の速さ v で右にピストンを押し， ∆t 後にピストンは
位置 Bに来た。この結果，位置 BからQまでの分子がすべて右に速さ v で動いたとする。(Q

から右ではまだ静止している。) つまり，∆tの間にピストンの動きが Qまで伝達されたこと
になる。∆tは小さく，また，音速はピストンの速さ vよりもはるかに大きいとする。従って，

ABの距離はAQに比べれば微小であるので，AQ=BQとして良い。よって，音速は c =
AQ

∆t
と考えられる。

A B Q

図 25: 管の中の気体とピストン

(1) 考察の対象である体積 V は管のAQ の間の体積である。 V を S, c, ∆t を用いて答えよ。

(2) ∆t の時間ピストンを動かしたことによる体積変化 ∆V を V, v, c を用いて答えよ。なお，
体積が減少したのだから∆V は負の量である。

(3) BからQまでの間の分子の運動量の増加は，圧力の変化 ∆pに関係している。断面積 Sのピ
ストンが ∆t だけ働いた際の力積が運動量の増加に等しい。これから圧力の変化 ∆p を ρ, c, v

を用いて答えよ。

(4) 以上の 3つの項の結果から，
∆p

∆V
を ρ, c, V を用いて答えよ。

(5) ピストンによる気体の圧縮は断熱変化であると考えられる。断熱変化では，pV γ = 一定，

が成り立つ。この式の両辺を V で微分して，
dp

dV
を答えよ。

(6) 体積 V 内に，分子量 M ，nモルの気体があるとき，密度 ρ はそれらでどのように表され
るか答えよ。

(7)
∆p

∆V
を (5)の微分でおきかえ，さらに (6)と状態方程式を使って，音速 c を R, γ, T, M

を用いて答えよ。

(8) 空気の分子量を 29g/mol ，比熱比を 1.4として 0◦C での音速の値を答えよ。

(9) 常温での気体の音速の温度依存性を c = c0 + α(T − T0)と書くことができる。ここで c0は
(8)で計算した速度であり，T0 = 0◦C = 273Kである。αを式で表し，更に数値を答えよ。

問 7 均質で自在に分離・接合することのできる等量の同じ物質A, Bがある。最初，物体A, B の温
度は TA, TB である。

(1) 以下で操作 P1(A, B)を定義する。図 26参照。これらの記号で括弧の中の引数は操作対象
を表す。

操作 P1(A, B) =



1)A, Bをそれぞれ等分してA1, A2および B1, B2とする
2)A1, B1を接触させて熱平衡とし，また離す
3)A1, B2を接触させて熱平衡とし，また離す
4)A2, B1を接触させて熱平衡とし，また離す
5)A2, B2を接触させて熱平衡とし，また離す
6)A1, A2および B1, B2を合体させて，それぞれ元の
A, Bとし，それぞれ熱平衡とする

(21)
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A

B

A1

A2

B1

B2

A1

A2

B1

B2

A1

A2

B1

B2

A1

A2

B1

B2

A

B

始 終

図 26: 操作 P1。点線は接触させて熱平衡とし離す操作を表す。

操作 P1(A, B)を行った後の物体A, B の温度を答えよ。

(2) 上の操作は再帰的に繰り返すことができる。n >= 1として以下で，操作 P2(A, B)，操作
P3(A, B)，· · · を順次帰納的に定義する。

操作 Pn+1(A, B) =



1)A, Bをそれぞれ等分してA1, A2および B1, B2とする
2)操作 Pn(A1, B1)を行う
3)操作 Pn(A1, B2)を行う
4)操作 Pn(A2, B1)を行う
5)操作 Pn(A2, B2)を行う
6)A1, A2および B1, B2を合体させて，それぞれ元の
A, Bとし，それぞれ熱平衡とする

(22)

操作 Pn(A, B)を行った後の物体 A, B の温度を anTA + bnTB, cnTA + dnTB と表す。（n = 1

ならば，a1, b1, c1, d1 は前の問で与えられている。）an+1, bn+1, cn+1, dn+1 を，それぞれ，
an, bn, cn, dnを用いて答えよ。

(3) 操作 P1(A, B)では a1 + c1 = 1, b1 + d1 = 1, a1 = d1 などが成り立っている。これらの関
係は熱量の保存などを考慮すれば成り立つべき関係式である。

前項で得られた関係式を用いて，任意の nで an + cn = 1, bn + dn = 1, an = dn が成り立つこ
とを帰納的に示せ。（これは前項のやや複雑な計算が正しいかどうかの検算ともなる。）

(4) 現実の物質では無限に細分化することは不可能であるが，数学的な極限として nが非常に
大きい操作を行ったときの物体A, B の温度を考える。

前項までの結果から anに対して以下の漸化式を得る。（確認せよ。）

an+1 = an − a2n + a3n

これを用いて，anが単調減少な数列であることを示し，nが無限大のときに数列が収束するな
らば，その極限値が何であるかを考えて，操作 Pn(A, B)で nが非常に大きくなったときの物
体A, B の温度を答えよ。



p.29(2020, 2Q)

10 熱力学第1法則

問 1 「状態量」とはどんな意味か答えよ。気体が堆積変化により外部に対してなす仕事W が状態量
でないことを具体的な例を示して説明せよ。

問 2 内部エネルギーが状態量であることから，図 27(1)を用いて，マイヤーの関係式 Cp = CV +R

を導け。

状態変化をなす物質は 1 molの理想気体とし，状態変化 A→C→B と状態変化 A→D→B を比
較する。Cp, CV は温度などの量によらない定数と仮定してよい。

V

p

O

A

B

C

D

V1 V2

p1

p2

(1) (2)

V

p

O

A

B

図 27: (1)マイヤーの関係式の導出， (2) p = kV

問 3 1 molの理想気体が図 27(2)に示すように状態Aから状態 Bまで p = kV という経路に沿って
状態変化した。この状態変化における比熱をR, CV を用いて表せ。

問 4 1mol の気体に対して,

κ = − 1

V

(
dV

dp

)
を圧縮率と呼ぶ

(1) なぜ，この量が「圧縮率」と呼ばれるのか，日常的な「硬い，柔らかい」という感覚と対応
させて説明してみよ。

(2) 理想気体を考え, 等温変化のときの圧縮率 κT と, 断熱変化のときの圧縮率 κAを求めよ。

問 5 図 28に示す密閉されたシリンダが鉛直に立てられている。このシリンダは下部の高さ 3hの部
分の断面積が Sで，上部の断面積が 2Sである。下部の部分に質量と厚さの無視できるピスト
ンが入っている。ピストンは摩擦なしに運動でき，ピストンの隙間から物質が移動することは
ない。また，熱がピストンやシリンダを通じて出入りすることもない。

ピストンの下部には空気が入っており，図 28(1)に示す最初の状態では高さは h，圧力は p0で

ある。空気は定積比熱が CV =
5

2
Rの理想気体とみなしてよい。気体の内部には体積と熱容量

の無視できるヒーターが入っており，気体を加熱することができる。ピストンの上には高さが
hの液体が入っており，その上部は真空である。液体が蒸発することはなく，液体と壁面の間
の摩擦は無視できるものとする。

重力加速度の大きさを gとする。

(1) 液体の密度を p0, g, hを用いて答えよ。
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(2) 図 28(1)の状態からヒーターでゆっくりと加熱して，図 28(2)の気体の高さが 2hの状態と
した。このとき，気体が外部になした仕事と，気体に流入した熱量を p0, S, hを用いて答えよ。

(3) 図 28(2)の状態の気体の温度を T0とする。この状態から，さらにヒーターでゆっくりと加
熱して，気体の高さが図 28(3)の 2h+ xの状態となったとする。ただし，x < hとする。その
ときの圧力を p，温度を T とする。pを p0, h, xを用いて答えよ。また，T を T0, h, xを用いて
答えよ。

（本当は，xは (5)で導入する x0よりも小さいとすべきだが，ここでは，その点は考えず解答
せよ。）

(4) 前項の図 28(2)の状態から図 28(3)の状態への変化において，気体が外部になした仕事，お
よび，内部エネルギーの変化量を p0, h, x, Sを用いて答えよ。

(5) xが増えてある x0となると，ヒーターの加熱を止めても，気体の高さはさらに増えていっ
た。図 28(2)の状態から図 28(3)の状態への変化において，気体に流入した熱量と xの関係か
ら，この x0を hを用いて答えよ。

(1) (2) (3)

h

h

h

真空

ピストン
液体

気体

2h
2h+ x

S

2S

T0 T, p

図 28: シリンダ内の気体

問 6 理想気体 1 molが断熱変化するとき，ポアッソンの法則，すなわち，pV γ =一定，という関係
がが導かれることを示せ。

問 7 空洞内の熱輻射の全体は物質ではないが，気体と同様に，その温度，圧力，体積，内部エネル
ギーなどの物理量で記述される。それは，光子気体と呼んでもよい。シュテファン・ボルツマ
ンの法則によれは，光子気体の内部エネルギーは U = σT 4V で表される。ここで σはシュテ
ファン・ボルツマン定数と呼ばれる定数で値は σ = 5.67× 10−8 W/(m2 ·K4)である。また，光
子気体の状態方程式は pV = 1

3U となる。

これから，光子気体が断熱変化するとき，pV 4/3 =一定，あるいは，T 3V =一定，という関係
が導かれることを示せ。

問 8 体積，圧力，温度が V0, p0, T0 である 1モルの理想気体が 3つある。気体の定積比熱は CV =

(3/2)Rである。これらの気体が，(A)等温変化，(B)定圧変化，(C)断熱変化の条件のもとで，
それぞれ体積が始めの 2倍となった。( 3

√
2 = 1.26)

(1) 横軸を V，縦軸を T とした状態図で，この 3つの状態変化を表せ。状態変化は実線で，始
状態，終状態は黒丸で表せ。区別するため終状態の黒丸にはA, B, C の文字を傍につけること。
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(2) 横軸を p，縦軸を T とした状態図で，この 3つの状態変化を表せ。表現の規約は前問と同じ
である。

問 9 温度 T , 圧力 p, 体積 V0 の 1molの理想気体が x倍に膨張して，体積が xV0となった。気体の比
熱比は γ である。

(1) 等温的に膨張したときの外界になした仕事の大きさWT をR, T, x で答えよ。

(2) 断熱的に膨張したときの外界になした仕事の大きさWAをR, T, x, γ で答えよ。

(3) 前 2項 (1, 2)の仕事の大きさWT , WA はどちらが大きいかを，結果の数式を比較して答
えよ。

(4) 前項 (3)で答えた仕事の大小関係がある理由を，pV 図を使って分りやすく説明せよ。

11 熱力学第2法則

本節では効率を η で表す。

問 1 以下の 3つの表現が論理的に同等であることを説明せよ。

(a) 熱機関の効率は 1よりも小さい

(b) 仕事が熱に変わり，それ以外に何の変化もないならば，その過程は不可逆である （トム
ソン）

(c) 熱を低温の物体から高温の物体に移し，それ以外に何の変化もないようにすることは不可
能である （クラウジウス）

(a)と (c)の同等性を説明するとき，図 29(1)を使うとよい。この図でAは通常の熱機関，Xは
クラウジウスが不可能としたことを可能とする装置である。

高温

低温

Q1

Q2

W

Q2

Q2

X熱機関

高温

低温

Q1

Q2

W

q2

q1

熱機関
可逆熱機関
(逆転運転)

(1) (2)

A A B

図 29: (1)問 1で (a)と (c)の関係の議論の図， (2)問 2の議論の図



p.32(2020, 2Q)

この前後の問では証明に「思考実験」が使われる。
思考実験とは，一定の実験器具や設定を組み合わせて，それを
用いて実験すればこれこれのような結果が得られるので，と
論ずる議論の方法である。
実際に実験をしても良いのだが，思考実験では，通常は不可
能な理想的な状況を設定できる。また，思考実験では背理法
と組み合わせて実験が不可能な事柄をも可能であるかのよう
に考え，それから，理論を証明することができる。例えば，図
29(1)では，クラウジウスにより存在が不可能とされた装置が
あたかも存在するかのように導入され議論を進めている。

問 2 問 (1)の (c)（クラウジウス）を利用して，カルノーの定理が正しいことを説明せよ。カルノー
の定理とは「可逆な熱機関の効率は極大である。つまり，ある熱機関の効率を η，可逆な熱機
関の効率を η0とすると，η0 >= η である。」というものである。

図 29(2)を使って議論せよ。ここで，Aは一般の（可逆を含む）熱機関，Bは可逆な熱機関を
（その可逆性を使って）逆転運転している。両者の熱機関の仕事出力と仕事入力は同一の値とな
るように調整してあるとする。

問 3 次の 3つの過程から成る熱サイクルの動作をする熱機関がある。

1. A→ B 温度 800Kの熱源に接触し，400kJの熱量を受け取る。

2. B → C 断熱的に膨張し仕事 100kJをする。

3. C → A 温度 300Kの熱源に接触し，QkJの熱量を排出する。

(1) ３ステップ目の熱量Qは何 kJか。

(2) この熱機関の効率を求めよ。

(3) この熱機関は可逆かどうか判定せよ。

問 4 ある発明家が，90%の効率を持つエンジンを開発したと発表した。このエンジンは空冷式であ
り，その主要部分は鉄でできている。鉄の融点は 1536◦Cである。あなたは，この発明家を信
じるか。理由を明示して答えよ。

問 5 カルノーサイクルの効率 ηを T1, T2を用いて答えよ。計算の際，サイクルで表される状態変化
をなす物質は 1 molの理想気体とする。

カルノーサイクルは図 30(1)に示されている。
1) A→B 高温（T1）の熱源により等温膨張
2) B→C 断熱変化で膨張
3) C→D 低温（T2）の熱源により等温圧縮
4) D→A 断熱変化で圧縮

問 6 スターリングサイクルの効率 ηを T1, T2を用いて答えよ。計算の際，サイクルで表される状態
変化をなす物質は 1 molの理想気体とする。

スターリングサイクルは図 30(2)に示されている。
1) A→B 高温（T1）の熱源により等温膨張
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p

O

(1) (2)
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C
D

V1 V2

T1

T2

図 30: (1)カルノーサイクル， (2)スターリングサイクル

2) B→C V2の定積変化で熱Q0を排出
3) C→D 低温（T2）の熱源により等温圧縮
4) D→A V1の定積変化で熱Q0を吸収
なお，2)で排出された熱Q0は理想的な熱交換器により 4)ですべて吸収されると仮定する。こ
のため，この 2), 4)での熱の出入りは効率の計算には算入しない。

問 7 オットーサイクルの効率 ηを γ, ρを用いて答えよ。ここで ρ =
V2
V1
は圧縮比と呼ばれる 1より大

きい量である。計算の際，サイクルで表される状態変化をなす物質は 1 molの理想気体とする。

オットーサイクルは図 31(1)に示されている。
1) A→B 高温の熱源により定積変化
2) B→C 断熱変化で膨張
3) C→D 低温の熱源により定積変化
4) D→A 断熱変化で圧縮

オットーサイクルは自動車のガソリンエンジンなどにも使われる熱サイクルの理想モデルで
ある。

V

p
(1)

V

p
(2)

V

p
(3)

A

B

C

D

V1 V2

p2

p1

A B

C
D

A B

C

D

V1 V2 V3

図 31: (1)オットーサイクル， (2)ブレイトンサイクル， (3)ディーゼルサイクル
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問 8 ブレイトンサイクルの効率 ηを γ, ϕを用いて答えよ。ここで ϕ =
p2
p1
は圧力比と呼ばれる 1よ

り大きい量である。計算の際，サイクルで表される状態変化をなす物質は 1 molの理想気体と
する。

ブレイトンサイクルは図 31(2)に示されている。
1) A→B 高温の熱源により定圧膨張
2) B→C 断熱変化で膨張
3) C→D 低温の熱源により定圧圧縮
4) D→A 断熱変化で圧縮

ブレイトンサイクルは航空機のジェットエンジンなどにも使われるガスタービン機関の熱サイ
クルの理想モデルである。

問 9 ディーゼルサイクルの効率 ηを γ, ρ, εを用いて答えよ。ここで ρ =
V2
V1

, ε =
V3
V1
は定圧膨張比

（噴射締切比），断熱圧縮比と呼ばれる 1より大きい量である。計算の際，サイクルで表される
状態変化をなす物質は 1 molの理想気体とする。

ディーゼルサイクルは図 31(3)に示されている。
1) A→B 高温の熱源により定圧膨張
2) B→C 断熱変化で膨張
3) C→D 低温の熱源により定積変化
4) D→A 断熱変化で圧縮

ディーゼルサイクルはディーゼルエンジンなどにも使われる熱サイクルの理想モデルである。

問 10 10節の問 7で説明されている光子気体を作業物質として，カルノーサイクルを考える。

カルノーサイクルは以下であるが，光子気体では等温変化は定圧変化でもあるので図 30(1)に
示されているものとは少し異なる。
1) A→B 高温（T1）の熱源により等温膨張
2) B→C 断熱変化で膨張
3) C→D 低温（T2）の熱源により等温圧縮
4) D→A 断熱変化で圧縮

まず，この場合のカルノーサイクルの pV 図を描け。そして，効率 ηを T1, T2を用いて答えよ。
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12 エントロピー，熱力学の関数

問 1 理想気体 1 molが状態 (pA, VA, TA) から状態 (pB, VB, TB) に準静的に変化したときのエントロ
ピーの変化が

SB − SA = CV log
TB
TA

+R log
VB
VA

(23)

であることを示せ。

問 2 理想気体 1 molが作業物質の図 30(1) のカルノーサイクルを考える。

(1) 横軸を S，縦軸を T の図でサイクルとして表せ。

(2) このサイクルが囲む面積の単位を SIで答えよ。

(3) このサイクルの面積は何を意味するか答えよ。

次の 2つの問では，エントロピーを計算する際の大事な点が
出てくる。エントロピーの変化量を ∆S = δQ/T で計算する
ことができるのは可逆的な変化に限られている。不可逆変化
ではこの式は使えない。
重要なことはエントロピーが状態量であるということである。
従って，与えられた変化とは別の可逆な状態変化で始状態と
終状態をつなぐことができるのであれば，その経路を利用し
てエントロピーの変化を計算してよいということになる。こ
のようにして不可逆な状態変化におけるエントロピーの変化
量を定めることができる。
これもまた一種の思考実験である。

問 3 図 32(1)の左のように，断熱材でできた容積が V1の箱があり，中央に仕切り板があって 2つの
部分に分けられている。箱の左の部分には物質量 n，体積 V0，温度 T の理想気体が入っており，
右の部分は真空である。

仕切り板を取り除いたところ，図 32(1)の右のように容器全体が気体で占められた。

(1) この過程で気体の温度は変化しない理由を説明せよ。

(2) この前後の気体のエントロピーを S0, S1とする。S1 − S0を答えよ。

(3) この不可逆変化により，エントロピーが増加したことを確認せよ。

エントロピー変化を求めるときは，図 32(2)のように，適切に気体をゆっくりと加熱し，可逆
的な等温膨張でゆっくりと仕切り板を右に動かす過程を考えて求める。

T

δQ

V0, T 真空 V1, T

(1) (2)

図 32: 気体の自由膨張
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問 4 断熱材でできた容積が 2V の箱があり，中央に仕切り板があって，それぞれ体積 V の 2つの部
分に分けられている。左右の部分には，同一の理想気体が，それぞれ，物質量 nだけ入ってお
り，箱の左の気体は温度 T1，箱の右の気体は温度 T2である。この状態で仕切り板を取り除き，
全体が熱平衡状態となった。

(1) 混合後の気体の温度を答えよ。

(2) 混合前と混合後の気体のエントロピーを S0, S1とする。S1 − S0を答えよ。

(3) この不可逆変化により，エントロピーが増加したことを確認せよ。

エントロピー変化を求めるときは，それぞれを，(1)の温度になるように，適切に気体をゆっく
りと加熱あるいは冷却し，それから仕切り板を取り除けばよい。

偏微分の場合 z = f(x, y)を x, y で微分するときは，
∂z

∂x
,
∂z

∂y
と記す。

熱力学の量は通常 2つ以上の量の関数だが，さまざまな量が使われるの
で，何を一定として微分したかを明示するために，微分に括弧をつけて一
定とした量を右下に明記することにする。このため，以降では上記の微
分は

∂z

∂x
→

(
∂z

∂x

)
y
,

∂z

∂y
→

(
∂z

∂y

)
x

と表記する。

問 5 気体の場合，一般に圧力 p，体積 V，温度 T の間には関係があり，それを状態方程式と呼ぶ。状
態方程式はある物質量の気体に対して f(p, V, T ) = 0と表現されるとする。

注意：例えば，1 molの理想気体の場合なら f(p, V, T ) = pV −RT である。ただし，この問以
降はこの式ではない一般的な関係式の場合も含めて考察する。

(1) x, y, zの間に関係式 f(x, y, z) = 0が成り立つとき以下の式を証明せよ。(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y
= −1 (24)

（注： f(x, y, z) = 0が成り立つなら，この式を変形して，x = F (y, z), y = G(x, z), z = H(x, y)

といった関係式が導けるものとする。）

(2) 気体に対して次の量を定義する。

定圧膨張率 β =
1

V

(
∂V

∂T

)
p
, 等温圧縮率 κ = − 1

V

(
∂V

∂p

)
T

(25)

このとき， (
∂p

∂T

)
V
=
β

κ
(26)

が成り立つことを導け。（左辺は定積圧力係数と呼ばれる。）

問 6 内部エネルギー U，エンタルピーH，ヘルムホルツの自由エネルギー F，ギプスの自由エネル
ギーGはそれぞれ以下のように 2つの物理量の関数として定義されている。

U = U(S, V ) , dU = TdS − pdV
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H = U + pV = H(S, p) , F = U − TS = F (T, V ) , G = U − TS + pV = G(T, p) (27)

(1) H,F,G の全微分が以下となることを導け。

dH = TdS + V dp , dF = −pdV − SdT , dG = V dp− SdT (28)

(2) このとき，以下のマクスウェルの関係式が成り立つことを導け。(
∂p

∂S

)
V
= −

(
∂T

∂V

)
S
,

(
∂V

∂S

)
p
=

(
∂T

∂p

)
S

,

(
∂S

∂V

)
T
=

(
∂p

∂T

)
V
,

(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

(29)

問 7 理想気体とは限らない一般の 1 molの気体を考える。

(1) 関係式 dU = TdS − pdV と，前問のマクスウェルの関係式を利用して以下の式を導け。(
∂U

∂V

)
T
= T

(
∂p

∂T

)
V
− p (30)

(2) 理想気体の場合，式 (30)が成り立つことを示せ。

(3) 気体が式 (20)のファン・デル・ワールスの状態方程式に従うとする。状態方程式があるの

で，U を T, V の関数と考えると dU =

(
∂U

∂T

)
V
dT +

(
∂U

∂V

)
T
dV となる。これと上の (1)の結

果を組み合わせて，
dU = CV dT +

a

V 2
dV (31)

を導け。ただし，CV =

(
∂U

∂T

)
V
で定義される定積比熱 CV は定数としてよい。

(4) 式 (20)のファン・デル・ワールス気体の断熱変化では (V − b)T γ−1 =一定，が成り立つこ

とを導け。ここで γ =
R

CV
+ 1 である。

また，理想気体の場合のポアッソンの法則に対応する関係式を導け。

問 8 以下を示せ。熱力学の関数の定義とその関数の独立変数は前の問を参照せよ。

(1) 等温変化において，外になすことのできる仕事 δW はヘルムホルツの自由エネルギーの減
少分 −∆F 以下であることを示せ。

(2) エンタルピー H は定圧変化において熱量の変化分を表すこと，つまり， ∆H = δQ である
ことを示せ。

（参考：飽和蒸気圧における融解熱，蒸発熱は融解エンタルピー，蒸発エンタルピーと呼ばれる。）

(3) 等温定圧変化において，平衡状態ではギブスの自由エネルギー G が極小になる，つまり
∆G <= 0 であることを示せ。

(4) 等温定積変化において，平衡状態ではヘルムホルツの自由エネルギー F が極小になる，つ
まり ∆F <= 0 であることを示せ。
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略解

略解はあなたが問題を解いた後で結果を確認するためのものである。略解はあくまで「略」
解であり，これをそのまま演習の解答として提示したり，試験のときにこれだけを覚えて
書いても極めて低い評価にしかならない。

演習問題の解答は基本的に文章でなければいけない。あなたの考えた内容が，解答とし
て読み手に伝わり，理解できるように記述しなくてはならないのである。だから，解答は
文章と数式が適度な割合で混ざっているのが普通である。時々，数式だけを書き連ねて解
答とする困った人がいるが，そういう解答を作成するのはやめてもらいたい（下の例）。
また，問題によっては図がないと説明が困難なものもあるので，そのようなときは適切な
図をきちんと示して解答とするべきである。

例題と解答の例

質点が x軸上を運動する。t = 0 において静止している質点に，加速度 a = A sinωt が働く。
時刻 tにおける質点の速度 vを求めよ。

悪い解答 (30点) 良い解答 (100点)

v =

∫
adt

v =

∫
A sinωtdt = −A

ω
cosωt+ C

t = 0, v = 0 ⇒ 0 = −A
ω
cos 0 + C ⇒ C =

A

ω

v =
A

ω
(1− cosωt)

速度と加速度の関係は以下である。

v =

∫
adt

与えられた加速度を代入して積分する。

v =

∫
A sinωtdt = −A

ω
cosωt+ C

積分定数を決めるために初期条件を使う。

t = 0のとき v = 0 ⇒ 0 = −A
ω
cos 0 + C

これから積分定数は C =
A

ω
となる。

以下が結果である。

v =
A

ω
(1− cosωt)
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13 質点の力学的物理量

問 1 (1) r⃗ = (r cosωt, r sinωt), v⃗ = (−rω sinωt, rω cosωt), a⃗ = (−rω2 cosωt,−rω2 sinωt)

(2) r⃗ · v⃗を計算する。ゼロなら直交している。

(3) a = v2/r

(4) 略

(5) F⃗ = ma⃗ = −mω2r⃗. 向心力，大きさmrω2，向き 円の中心向き

(6) K = 1
2mv

2 = 1
2mr

2ω2

(7) p⃗ = (−mrω sinωt,mrω cosωt, 0), ℓ⃗ = (0, 0,mr2ω)

問 2 (1) r⃗ = (v0t, 0, u0t− 1
2gt

2), v⃗ = (v0, 0, u0 − gt), a⃗ = (0, 0,−g)

(2) p⃗ = (mv0, 0,mu0 −mgt), ℓ⃗ = (0, 12mgv0t
2, 0)

F⃗ = (0, 0,−mg), N⃗ = (0,mgv0t, 0)

(3) (2)の結果から計算する。

(4) K = 1
2m[v20 + (u0 − gt)2)], U = mg(u0t− 1

2gt
2)

K + U = 1
2m(v20 + u20) =一定

問 3 (1) C : s−1, R : m

(2) 図略。サイクロイド。

(3) v⃗ = (Rc(1− cos ct), Rc sin ct), a⃗ = (Rc2 sin ct, Rc2 cos ct)

|v⃗|2の最大を考えればよい。|v⃗|2 = 2(Rc)2(1− cos ct) <= 4(Rc)2より，最大は t = π/cのときで
2Rc。

問 4 (1) R : m, ω : s−1, α : m/s

(2) z軸方向の半径 rの螺旋（弦巻線）。

(3) p⃗ = (−mRω sinωt,mRω cosωt,mα),

ℓ⃗ = (mαR(sinωt− ωt cosωt),mαR(− cosωt− ωt sinωt),mR2ω)

(4) ℓ⃗ = (ℓx, ℓy, ℓz) として ℓx, ℓy を積分すると，以下が出てくる。∫
(sinωt−ωt cosωt)dt = 1

ω
(−2 cosωt−ωt sinωt),

∫
(− cosωt−ωt sinωt)dt = 1

ω
(−2 sinωt+ωt cosωt)

ℓxは t = 2πn/ω ∼ 2π(n+ 1)/ω で平均する（nは負でない整数）とゼロになる。

ℓyは t = (2πn+π/2)/ω ∼ (2π(n+1)+π/2)/ω で平均する（nは負でない整数）とゼロになる。

問 5 (1) mdv
dt = −bv, v = V e−(b/m)t, x = mv

b (1− e−(b/m)t)

(2) 略

(3) K = 1
2mV

2

(4) x0 = x(t = ∞)とする。

W =

∫ x0

0
Fdx =

∫ ∞

0
F
dx

dt
dt =

∫ ∞

0
(−bv)vdt = −bV 2

∫ ∞

0
e−2(b/m)tdt = −1

2
mV 2

よって K +W = 0。
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問 6 (1) md2x
dt2

= −kv, v = −x0ω sinωt+ v0 cosωt, x = x0 cosωt+
v0
ω sinωt

(2) ω =
√
k/m.

A =
√
x20 + (v0/ω)2, ϕ0 = arctan(x0ω/v0).

(3) 略

(4) K = 1
2m(−x0ω sinωt+ v0 cosωt)

2, U = 1
2k(x0 cosωt+

v0
ω sinωt)2

合計すると K + U = 1
2mv

2
0 +

1
2kx

2
0 =一定

14 ラグランジュ形式の力学（１）

問 1 (1) x = r cosϕ, y = r sinϕ

(2) r =
√
x2 + y2, ϕ = arctan y

x

(3) J =
∣∣∣ ∂(r,ϕ)∂(x,y)

∣∣∣ = r

(4) K = 1
2(ẋ

2 + ẏ2) = 1
2m(ṙ2 + r2ϕ̇2)

問 2 (1) x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

(2) r =
√
x2 + y2 + z2, θ = arctan

√
x2+y2

z , ϕ = arctan y
x

(3) J =
∣∣∣ ∂(r,θ,ϕ)∂(x,y,z)

∣∣∣ = r2 sin θ

(4) K = 1
2m(ẋ2 + ẏ2 + ż2) = 1

2m(ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ)

問 3 (1) (x2 − x1)
2 + (y2 − y1)

2 = ℓ2

(q3 − q1)
2 + (q4 − q2)

2 = ℓ2

(2) q4を (1)を用いて消去。

K =
1

2
m1(q̇

2
1 + q̇22) +

1

2
m2

q̇23 +
(
q̇2 −

(q3 − q1)(q̇3 − q̇1)√
ℓ2 − (q3 − q1)2

)2


(3) x1 = q1, y1 = q2, x2 = q1 + ℓ cos q3, y2 = q2 + ℓ sin q3

K =
1

2
m1(q̇

2
1 + q̇22) +

1

2
m2(q̇

2
1 + q̇22 + ℓ2q̇23 + 2ℓq̇3(−q̇1 sin q3 + q̇2 cos q3))

問 4 (1) ∆s =
√
(∆x)2 + (∆y)2 + (∆z)2

s =
∑

∆s =

∫ θ

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

+

(
dz

dθ

)2

dθ

(2) K = 1
2m(ẋ2 + ẏ2 + ż2) = 1

2mṡ
2

問 5 (1) 0

(2) ẋ = rϕ̇ つまり q̇1 = rq̇2

(3) 1

(4) 積分して q1 = rq2 + C （C は初期条件から決める）
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問 6 (1) q̇1 = rq̇3 cos q4, q̇2 = rq̇3 sin q4

(2) 2

(3) 不可能（きちんと説明するのは少し難しい。）

15 ラグランジュ形式の力学（２）

問 1 (1) L = 1
2mq̇

2 −mgq

(2) mq̈ +mg = 0

(3) F = −mgと同等。

(4) q = −1
2gt

2 + v0t+ x0

問 2 (1) L = 1
2mq̇

2 − 1
2kq

2

(2) mq̈ + kq = 0

(3) F = −kxと同等。

問 3 (1) x = ℓ sin θ, y = ℓ cos θ

(2) L = 1
2m(ẋ2 + ẏ2)− (−mgy) = 1

2mℓ
2q̇2 +mgℓ cos q

(3) mℓ2q̈ +mgℓ sin q = 0

(4) q̈ = −(g/ℓ)q と振動の方程式となる。T = 2π
ω = 2π

√
ℓ
g

問 4 (1) x1 = ℓ1 sin θ1, y1 = ℓ1 cos θ1, x2 = ℓ1 sin θ1 + ℓ2 sin θ2, y2 = ℓ1 cos θ1 + ℓ2 cos θ2

(2) L = 1
2m1(ẋ

2
1 + ẏ21) +

1
2m2(ẋ

2
2 + ẏ22)− (−mgy1 −mgy2)

L = 1
2m1ℓ

2
1q̇

2
1+

1
2m2(ℓ

2
1q̇

2
1+ℓ

2
2q̇

2
2+2ℓ1ℓ2q̇1q̇2 cos(q1−q2))+m1gℓ1 cos q1+m2g(ℓ1 cos q1+ℓ2 cos q2)

(3) q1に対して： m1ℓ
2
1q̈1 +m2[ℓ

2
1q̈1 + ℓ1ℓ2(q̈2 cos(q1 − q2)− q̇2(q̇1 − q̇2) sin(q1 − q2))]

+m2ℓ1ℓ2q̇1q̇2 sin(q1 − q2) + (m1ℓ1 +m2ℓ2)g sin q1 = 0

⇒ m1ℓ
2
1q̈1 +m2[ℓ

2
1q̈1 + ℓ1ℓ2(q̈2 cos(q1 − q2) + q̇22 sin(q1 − q2))] + (m1ℓ1 +m2ℓ2)g sin q1 = 0

q2に対して： m2ℓ
2
2q̈q +m2ℓ1ℓ2[q̈1 cos(q1 − q2) + q̇1(q̇1 − q̇2) sin(q1 − q2))]

−m2ℓ1ℓ2q̇1q̇2 sin(q1 − q2) +m2ℓ2g sin q2 = 0

⇒ m2ℓ
2
2q̈2 +m2ℓ1ℓ2[q̈1 cos(q1 − q2) + q̇21 sin(q1 − q2)] +m2ℓ2g sin q2 = 0

問 5 (1) x = tanαz cosϕ, y = tanαz sinϕ

L =
1

2
m

(
q̇21

cos2 α
+ tan2 αq21 q̇

2
2

)
−mgq1

(2) m tan2 αq21 q̇2 z軸のまわりの角運動量

(3) q̇2 = L/(m tan2 αq21)

運動方程式
1

cos2 α
q̈1 −

(
L2

m tan2 αq31
− g

)
= 0
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(4) エネルギー

E = K + U =
1

2
m

(
q̇21

cos2 α
+

L2

m2 tan2 αq21

)
+mgq1

E0 =
1

2
m

(
v20

cos2 α
+

L2

m2 tan2 αz20

)
+mgz0

E0 >=
L2

2m tan2 α

1

q21
+mgq1

から z = q1の運動可能範囲が求められる。上の式をグラフで表して示すとよい。

問 6 (1) U = 1
2k(x1 − ℓ)2 + 1

2k(x2 − x1 − ℓ)2 + 1
2k(x3 − x2 − ℓ)2 + 1

2k(4ℓ− x3 − ℓ)2

(2) ẋ1 = q̇1 などが成り立つ。

L = 1
2m(q̇21 + q̇22 + q̇23)−

[
1
2kq

2
1 +

1
2k(q2 − q1)

2 + 1
2k(q3 − q2)

2 + 1
2kq

2
3

]
(3) 運動方程式 

mq̈1 +2kq1 −kq2 = 0

mq̈2 −kq1 +2kq2 −kq3 = 0

mq̈3 −kq2 +2kq3 = 0

(4) 
−ω2A1 +2ω2

0A1 −ω2
0A2 = 0

−ω2A2 −ω2
0A1 +2ω2

0A2 −ω2
0A3 = 0

−ω2A3 −ω2
0A2 +2ω2

0A3 = 0

(5)

M =

 2ω2
0 − ω2 −ω2

0 0

−ω2
0 2ω2

0 − ω2 −ω2
0

0 −ω2
0 2ω2

0 − ω2


(6) ω2 = 2ω2

0, (2±
√
2)ω2

0

(7) 図略

ω = ω1 =
√
2ω0

M1 = ω2
0

 0 −1 0

−1 0 −1

0 −1 0

 ,
 A1

A2

A3

 =

 1

0

−1



ω = ω2,3 =
√
2±

√
2ω0

M2,3 = ω2
0

 ∓
√
2 −1 0

−1 ∓
√
2 −1

0 −1 ∓
√
2

 ,
 A1

A2

A3

 =

 1

∓
√
2

1


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問 7 L = m
2 ℓ

2(2q̇21 + 2q̇1q̇2 + q̇22)−mgℓ(q21 +
q22
2 )+ 定数

運動方程式 {
mℓ2(2q̈1 + q̈2) +2mgℓq1 = 0

mℓ2(q̈1 + q̈2 +mgℓq2 = 0

固有振動数 ω2 = (2±
√
2)ω2

0

振動モード ω = ω1,2 =
√
2±

√
2ω0

M1,2 = ω2
0

(
−2∓ 2

√
2 −2∓

√
2

−2∓
√
2 −1∓

√
2

)
,

(
A1

A2

)
=

(
1

∓
√
2

)

問 8 (1) x = ℓ sin θ, y = ℓ cos θ +B cosβt

L = m
2 (ℓ

2θ̇2 + 2ℓBβθ̇ sin θ sinβt+B2β2 sin2 βt) +mg(ℓ cos θ +B cosβt)

(2) L = m
2 (ℓ

2θ̇2 + 2ℓBβθ̇ sin θ sinβt) +mgℓ cos θ

(3)

θ̈ +
g

ℓ

(
1 +

Bβ2

g
cosβt

)
sin θ = 0

16 ラグランジュ形式の力学（３）

問 1 (1)

L =
m1

2
(q̇21 + q̇22 + q̇23) +

m2

2
(q̇24 + q̇25 + q̇26)− U(q4 − q1, q5 − q2, q6 − q3)

(2)

r⃗1 = R⃗+
m2

m1 +m2
(r⃗1 − r⃗2), r⃗2 = R⃗+

m1

m1 +m2
(r⃗2 − r⃗1)

L =
M

2
˙⃗
R

2

+
µ

2
˙⃗r
2 − U(r⃗)

運動方程式
R⃗ : M

¨⃗
R = 0

r⃗ : µ¨⃗r +∇U(r⃗) = 0

問 2 (1)

L =
m

2
(q̇21 + q̇22 + q̇23)− U(r) (r =

√
q21 + q22 + q23)

運動方程式

mq̈1 +
q1
r
U ′(r) = 0, mq̈2 +

q2
r
U ′(r) = 0, mq̈3 +

q3
r
U ′(r) = 0.

(2)

L =
m

2
(q̇21 + q21 q̇

2
2 + q21 sin

2 q2q̇
2
3)− U(q1)

運動方程式。（U は第 1式にのみ入る点に着目。）

1) mq̈1 + U ′(q1)−mq1q̇
2
2 −mq1 sin

2 q2q̇
2
3 = 0,

2) m(q21 q̈2 + 2q1q̇1q̇
2
2)−mq21 sin q2 cos q2q̇

2
3 = 0,

3) m(q21 sin
2 q2q̈3 + 2q1q̇1 sin

2 q2q̇3 + 2q21 q̇2 sin q2 cos q2q̇3) = 0.
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(3) q̇2 = 0, sin q2 = 1, cos q2 = 0 とおく。

運動方程式
1) mq̈1 + U ′(q1)−mq1q̇

2
3 = 0,

2) 0 = 0,

3) m(q21 q̈3 + 2q1q̇1q̇3) = 0 ⇒ d

dt

(
mq21 q̇3

)
= 0

(4) z軸のまわりの角運動量

問 3 (1)

U ′ =
GmM

r2
= GmMρ2, ϕ̇ =

ℓ

mr2
=

ℓ

m
ρ2

r̈ =
ℓ

mr2
d

dϕ

(
ℓ

mr2
dr

dϕ

)
=

ℓ2

m2
ρ2

d

dϕ

(
ρ2
d(1/ρ)

dϕ

)
= − ℓ2

m2
ρ2
d2ρ

dϕ2

これらより以下を得る。以下の式から r0も分かる。

d2ρ

dϕ2
+ ρ =

Gm2M

ℓ2
=

1

r0

(2) rの極小は ρの極大なので，ϕ = 0で dρ/dϕ = 0を要求すると C2 = 0となる。

(3)
dr

dϕ
=

r0e sinϕ

(1 + e cosϕ)2

d2r

dϕ2
= r0e

cosϕ(1 + e cosϕ)2 − sinϕ× 2(1 + e cosϕ)(−e sinϕ)
(1 + e cosϕ)4

ϕ = 0で評価する。

(4) e = 0 · · · 円

1 > e > 0 · · · 楕円

e = 1 · · · 放物線

e > 1 · · · 双曲線

(5)

T =

∫ T

0
dt =

∫ 2π

0

dt

dϕ
dϕ =

∫ 2π

0

mr2

ℓ
dϕ =

∫ 2π

0

m

ℓ

r20
(1 + e cosϕ)2

dϕ =
2π√
GM

(
r0

1− e2

)3/2

軌道の長径は

a = r(ϕ = 0) + r(ϕ = π) =
2r0

1− e2

となる。

以上から T は a3/2 に比例する。

問 4 まず外積の公式を使って変形しておく。

A⃗ =
1

m
((p⃗ · p⃗)r⃗ − (p⃗ · r⃗)r⃗)− GmM

r
r⃗

あとは，単純に tで微分し

dr⃗

dt
=

p⃗

m
,

dp⃗

dt
= F⃗ = −GmM

r3
r⃗, p⃗ · r⃗ = mrṙ

といった関係式を順次活用していけば dA⃗/dt = 0が示せる。
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問 5 (1)

m1r1ω
2
0 = m2r2ω

2
0 =

Gm1m2

a2

i) m1r1 = m2r2

ii) ω2
0 =

GM

a3

以上の式を以下で活用する。

(2) L1 にある質量mの天体に対して以下の力の関係が成り立つ。

m(r2 − x1)ω
2
0 =

Gm1m

(a− x1)2
− Gm2m

x21

これを変形すると問の関係式が得られる。

L2: x2 = za

1 + (1 + α)z =
1

(1 + z)2
+
α

z2

L3: x3 = za

α+ (1 + α)z =
1

z2
+

α

(1 + z)2

(3)

i)

r⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

ii)

F⃗1 =
Gm1m

R3
1

r⃗1, F⃗2 =
Gm2m

R3
2

r⃗2

なので，導かれる。

iii) 前項から
1

M
= CGm

1

R2
1

であり，F⃗1 + F⃗2 =
1

C
r⃗ = mr⃗ω2

0 なので，導かれる。

17 変分法

問 1 (1) T =
1

v1

√
x2 + a2 +

1

v2

√
(c− x)2 + b2

(2)
dT

dx
=

1

v1

x√
x2 + a2

+
1

v2

−(c− x)√
(c− x)2 + b2

= 0 から得られる。

問 2 (1) y2 =
b2

a
x

(2) Aの極大が存在しないことを適切に説明する。yは任意の関数だから，被積分関数 (yy′)2 は
いくらでも大きくできる。

問 3 y2 =
3

4

B

a3
(a2 − x2)
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問 4 (1) T0 =

√
2(a2 + h2)

gh

(2) v =
√
2gy

(3) ∆t =
∆s

v
=

√
(∆x)2 + (∆y)2√

2gy

(4) T =
∑
∆t =

∫ a

0

√
1 + (y′)2√

2gy
dx

(5) オイラー方程式は変形すると以下となる。（σなどは数学的補遺参照。）

d

dx

(
1
√
y

y′

σ

)
−
(
− σ

2y3/2

)
= 0 ⇒ yy′′ +

1

2
σ2 = 0

これを解いて以下を得る。（問のヒント参照。）θは媒介変数である。rは初期条件から決まる定
数である。（C2/2 = r） {

x = r(θ − sin θ)

y = r(1− cos θ)

(6)

T =

∫ a

0

σ√
2gy

dx =

√
2r√
2g

∫ π

0
dθ =

√
r

g
π

T0 =

√
2((πr)2 + (2r)2)

g(2r)
=

√
r

g

√
π2 + 4 なので，T/T0 = 0.84.

問 5 (1) 2πy∆s

(2) S =

∫ a

−a
2πyσdx

(3) オイラー方程式は yy′′ − σ2 = 0 となる。これを解く。（問のヒント参照。）

y =
1

C
coshCx ただし b =

1

C
coshCaから C が決まる

（注：CをC = · · ·と a, bの閉じた式で表現できれば，それを代入するのだが，それができない
ので，このように表現している。）

問 6 (1) S =

∫ a

−a
ydx, L =

∫ a

−a
σdx

(2) 円弧となる。

問 7 (1) U =

∫ a

−a
gρyσdx, L =

∫ a

−a
σdx

(2) y+ λ/(ρg) を新たに y とすると，問 5と同様，オイラー方程式は yy′′ − σ2 = 0 となる。こ
れを解く。

y =
1

C
coshCx− λ

ρg
ただし ℓ =

2

C
sinhCa, b =

1

c
coshCa− λ

ρg
から C, λが決まる

（問 5の略解の注を参照。）
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18 剛体を記述する量

問 1 (1) 直角の頂点を原点としたとき (a3 ,
b
3)

(2) 対称軸（頂角を θ/2にわける線）に沿って中心から 2
3rの位置

(3) 頂点から対称軸（中心軸）に沿って 2
3rの位置

(4) 対称軸に沿って中心から 3
4rの位置

(5) R⃗ = −r3R
2(R3−3r3)

(1, 1, 1)

問 2 (1) 1本分が I1 =
1
3Ma2 ，全体で I = 4

3Ma2

(2) I = 1
2M(a2 + b2)

(3) I = 3
10M

b5−a5

b3−a3
（分子と分母で (b− a)を打ち消したものを答えとしても可）

問 3 (1) M =
∑
mk, R⃗ = 1

M

∑
mkr⃗k

(2) IG =
∑
mk(x

2
k + y2k)

I =
∑
mk((xk − a)2 + y2k) =

∑
mk(x

2
k + y2k)− 2a

∑
mkxk + a2

∑
mk = IG + 0 +Ma2

(3) Iz =
∑
mk(x

2
k + y2k), Ix =

∑
mky

2
k, Iy =

∑
mkx

2
k

よって Iz = Ix + Iy

問 4 (1) 公式より Iz =
1
2mr

2とし，対称性から Ix = Iy と考えて求める。
1
4mr

2

(2) m = (∆x/h)M より ∆I = 1
4
∆x
h Mr2 + ∆x

h Mx2

(3) I =
∑
∆I =

∫ h/2

−h/2

(
1

4

M

h
r2 +

M

h
x2
)
dx =

1

4
Mr2 +

1

12
Mh2

問 5 (1) 公式より質量M，半径 rの球 I1 =
2
5Mr2，質量M +∆M，半径 r+∆rの球 I2 =

2
5(M +

∆M)(r +∆r)2 である。密度が同じなので M+∆M
M = (4π/3)(r+∆r)3

(4π/3)r3
も成り立つ。これらの差を

考え，微小量の一次までを残す。
2
3mr

2

(2) C = 4
3

M
RV

(3) I = 4
9MR2

問 6
x2

a2
+
y2

b2
= 1の領域を Sとし，そこで積分をするとき，

x = ar cosϕ, y = br sinϕ とし，
∫
S dxdy · · · = ab

∫ 1
0 r dr

∫ 2π
0 dϕ · · · と変換するやり方がある。

(1) πab

(2) M
a4 + b4

ab

(3) 4π
3 abc

(4)
1

5
M
a4 + b4

ab

問 7 z軸を鉛直方向として，質点mkにかかる力が f⃗k = (0, 0,−mg) である。

重力による力の合計：
∑
f⃗k = −Mg

重力による力のモーメントの合計：
∑
r⃗k × f⃗k = R⃗× (0, 0,−Mg)
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19 剛体の静力学

問 1 (1) 不可。
∑
F⃗ ̸= 0 となるから。

(2) いろいろな解がありえる。下図（左）以外にも，上下の辺に対になっている力を加えること
もできる。下図などでも力を斜めにかけることも可能である。

F ′

F ′

b

b

F ′ =
aF

a− 2b

x

N

f
Mg

F sin θ

F cos θ

問 2 (1) F を水平成分と鉛直成分にわけて考える。抗力の大きさをN，摩擦力の大きさを f とする。
また，抗力の作用点とABの中点との間の距離を x とする。上図（右）参照。

力のつりあい。 N = F sin θ +Mg， f = F cos θ

力のモーメントのつりあい（重心を中心） a
2F cos θ + a

2f = a
2F sin θ + xN

x =
a(2 cos θ − sin θ)

2(F sin θ +Mg)

(2)

F1 =
Mg

2(cos θ − sin θ)

なお，F = F1のときは，抗力の作用点は x = a/2 となる，つまり，点Aとなる。

(3)

µ >=
cos θ

2 cos θ − sin θ

問 3 (1) 抗力の大きさをNA, NB, NC とする。

NA = 1
3Mg, NB = NC = 1

3Mg + 1
2mg

(2) m >=M

(3) 3
4r

問 4 (1) θ1 = θ2

(2)

T =
(M1 +M2)g

2 cos θ

(3) M1g(r1 + x) sin θ =M2g(L− x+ r2) sin θ

(4)

cos(θ1 + θ2) =
ℓ2(M2

1 +M2
2 )− (r1 + r2)

2(M1 +M2)
2

2ℓ2M1M2

問 5 はしごの下端から人までの距離を xとすると，x/L = (6
√
3− 1)/10 = 0.94の位置でつりあい

が破れる。
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問 6 (1) 抗力の大きさをNB, NC と表すと，NB = NC = mg cot θとなる。

(2)
M

m
>=

2(R− r)

r

問 7 (1)

x1 <= x2 + L · · · 1番上の板が安定な条件
1
2(x1 + x2) <= x3 + L (x3 = 0) · · · 1番上と 2番目の板の全体が安定な条件

これから，x1の最大値は
3

2
L となるので右端の位置の最大値は

5

2
L 。

(2) 前項と同様に n− 1本の不等式が成り立つ。

x1 <= x2 + L

1
2(x1 + x2) <= x3 + L

1
3(x1 + x2 + x3) <= x4 + L

:

1
n−1(x1 + x2 + · · ·+ xn−1) <= xn + L (xn = 0)

上の式で不等号を等号に読み替え，連立方程式とする。上の式で k − 1番目の式を k番目の式
に代入すると

xk − xk+1 =
1
kL

を得る。この式を k = 1 から k = n− 1 まで全部並べて加算すると以下となる。

x1 − xn =

(
1

1
+

1

2
+ · · ·+ 1

n− 1

)
L

xn = 0であり，これにより以下を得る。

右端の位置の最大値 =

(
1 +

n−1∑
k=1

1

k

)
L

(3) n = 100と n = 1000のときの差の Lの係数は

1

100
+

1

101
+ · · ·+ 1

999
∼
∫ 1000

100

dx

x
= log 10 ≃ 2.3026

つまり，900枚使ってやっと 1枚分と少々右に伸びる。

なお，左辺の値を正確に求めると，2.3071である。
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20 剛体の動力学

問 1 (1)

m1a = T1 −m1g, m2a = m2g − T2, I
a

r
= −rT1 + rT2

(2)

a =
m2 −m1

1
2M +m1 +m2

g

問 2 (1)
√
3gL

(2) µ = tanϕ0

問 3 I = IA + IB

棒 IA = 1
3mL

2

球 IB = 2
5Mr2 +M(L+ r)2

運動方程式 Iϕ̈ = −(L/2) sinϕmg − (L+ r) sinϕMg

T =
2π

ω
= 2π

√√√√ 1
3mL

2 + 2
5Mr2 +M(L+ r)2

L
2m+ (L+ r)M

1

g

問 4 缶の質量をM，慣性モーメントを I とすると，坂を下る運動は斜面に沿った加速度 aが

a =
g sin θ

1 + (I/Mr2)

の等加速度運動となる。I/Mr2が小さいほど加速度が大きくなり先に下につくので，そのまま
の缶のほうが空き缶より早い。

問 5 始状態では，角運動量 L⃗の向きは z軸方向である。これを (1)では x軸方向に，(2)では y軸方
向に変えるように力を働かせる。問題文にある条件から，偶力を加えれば重心の位置は変えず
に力のモーメントをはずみ車に加えることができる。

ヒントにあるように，角運動量の変化は ∆L⃗ = N⃗∆t である。

(1) −z軸/紙面に垂直で手前， z軸/紙面に垂直で奥

(2) x軸/紙面右， −x軸/紙面左

問 6 持ち上がっている長さを xとし，そこから∆tの間にさらに長さ∆xだけ持ち上がるとする。

vは一定なので，長さ∆xだけの部分が獲得した運動量は ∆p = (ρ∆x)vである。

長さ∆xだけの部分に働く力を f ′とすると，f = ρgx+ f ′ である。よって（v = ∆x/∆t）

∆p = f ′∆t → (ρ∆x)v = (f − ρgx)∆x → ρv2 = f − ρgx → f = ρv2 + ρgx

となる。

なお，この問の状況は非弾性衝突のような現象なのでエネルギー保存則は使えず，運動量保存
則で考えている。
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問 7 運動方程式は以下である。I = (1/2)Mr2である。

M
dv

dt
= F, I

dω

dt
= N

すべっているときは動摩擦力が働く。そうでないとき（転がっているとき）は動摩擦は働かず，
運動は時間的に一定となる。また，すべっているときの動摩擦力の向きはすべっている向きと
逆向きである。

(i) v0 = rω0 すべらずに転がっている。速度，角速度は一定である。v = v0, ω = ω0.

(ii) v0 > rω0 右にすべっている。

t < T v = v0 − µgt, rω = rω0 + 2µgt T =
v0 − rω0

3µg

t >= T v = V, rω = V V =
2v0 + rω0

3

(iii) v0 < rω0 左にすべっている。

t < T v = v0 + µgt, rω = rω0 − 2µgt T =
−v0 + rω0

3µg

t >= T v = V, rω = V V =
2v0 + rω0

3
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21 熱力学の基礎

問 1 説明略。以下記号で書いたが名前を添えること。

示強性： p, T, ρ, . . .

示量性： V,U,Q, . . .

問 2 1.08× 1026個

2.28× 10−10 m

問 3 (1)

κ =
Qd

St(T2 − T1)

(2) 移動する熱の量は以下に比例するであろう。
・ 熱伝導率
・ 断面積
・ 時間
・ 温度勾配 ( (T2 − T1)/d )

問 4 (1) 理想気体

(2) a: Pa ·m6 = kgm5/s2 b: m3

(3)
dp

dV
= − RT

(V − b)2
+

2a

V 3

(4)

V

p

V

p

(A) (B)

(5) RTc =
8a

27b

(6) 略

問 5 (1)
dp

dz
= −ρg

(2)
dT

dp
=
γ − 1

γ

T

p

(3)
dT

dz
= −γ − 1

γ
ρg
T

p

(4)
dT

dz
=− 0.01 K/m
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100m あたり 1度下がる。

(5) 温度低下で空気中に含まれる水蒸気が水になるときに熱（凝縮熱）を放出する。

問 6 (1) V = Sc∆t

(2) ∆V = −Sv∆t

(3) ∆p = ρvc

(4)
∆p

∆V
= −ρc

2

V

(5)
dp

dV
= −γ p

V

(6) ρ =
nM

V

(7) c =

√
γRT

M

(8) 331 m/s

(9) α =
c0
2T0

= 0.61

問 7 (1)

A1 A2 B1 B2

1) TA TA TB TB

2) (TA + TB)/2 ↓ (TA + TB)/2 ↓
3) (TA + 3TB)/4 ↓ ↓ (TA + 3TB)/4

4) ↓ (3TA + TB)/4 (3TA + TB)/4 ↓
5) ↓ (TA + TB)/2 ↓ (TA + TB)/2

6) (3TA + 5TB)/8 (5TA + 3TB)/8

(2)

an+1 = a2n + anbncn

bn+1 = (1/2)(bn + bnan + bndn + anbndn + b2ncn)

cn+1 = (1/2)(cn + cndn + cnan + ancndn + c2nbn)

dn+1 = d2n + bncndn

(3) 前提となる関係式 an + cn = 1, bn + dn = 1, an = dn を繰り返し an+1 + cn+1 などに適用し
ていくと証明できる。

(4) この式は

an+1 = a2n + anbncn = a2n + an(1− dn)(1− an) = a2n + an(1− an)(1− an)

としてでてくる。

an+1 = an − an(1− an) なので

0 < an < 1であれば → 0 < an+1 < 1 および an+1 < an

limn→∞ an = x とすると x = x − x2 + x3 より x = 0 あるいは x = 1。減少数列なので
limn→∞ an = 0 となる。

Aと Bの温度が逆転する。
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22 熱力学第1法則

問 1 「状態量」の説明は略。

pV 図での 2つの状態の間を結ぶ線が無数にあり，その下の面積が仕事W になる。

問 2 4つの状態の温度を TA, TB, TC , TD とする。

Q W

A → C Cp(TC − TA) p1(V2 − V1) = R(TC − TA)

C → B CV (TB − TC) 0

A → D CV (TD − TA) 0

D → B Cp(TB − TD) p2(V2 − V1) = R(TD − TB)

状態量なので∆U(A → C → B) = ∆U(A → D → B) とおき，式を整理すると以下となる。

(Cp − CV −R)(TC − TA − TB + TD) = 0

任意の長方形をなす A, B, C, D についてこれが成り立つのでマイヤーの関係式が導かれた。

問 3 C = CV + (R/2)

問 4 (1) 略

(2) κT =
1

p
, κA =

1

γp
.

問 5 (1) ρ =
p0
hg

(2) 仕事 ： W = Sp0h , 熱量 ： Q =
7

2
Sp0h

(3) p = p0

(
1− x

2h

)
, T = T0

(
1−

(
x

2h

)2
)

(4)

W =

∫ x

0
Sp(x′)dx′ = Sp0

(
x− x2

4h

)

∆U = nCV (T − T0) = −5

2
Sp0(2h)

(
x

2h

)2

(5)

Q = ∆U +W = 2Sp0h

[
−5

2

(
x

2h

)2

+
x

2h
− x2

8h2

]
= 2Sp0h

[
−3

(
x

2h
− 1

6

)2

+
1

12

]

これから，Qは x =
h

3
で極大となる。これ以降はヒーターを切ってもピストンは上昇する。こ

れが x0である。

問 6 断熱変化なので，第 1法則から ∆U = CV∆T = −p∆V。

状態方程式の微小変化から以下となる。

pV = RT ⇒ ∆pV + p∆V = R∆T = − R

CV
p∆V
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これから
dp

dV
= −γ p

V

(
γ = 1 +

R

CV

)
となり，積分して pV γ = C =定数，を得る。

問 7 前の問いと同様，断熱変化なので，第 1法則から ∆U = −p∆V。これと状態方程式から出てく
る dU = 3d(pV ) = 3(pdV + V dp) を組み合わせて，あとは前の問と同様に計算する。

問 8 (1) 左， （2）右

T

V

T0

2T0

0.63T0

V0 2V0

T

p

T0

2T0

0.63T0

V00.31V0

A

B

C

B

A

C

問 9 (1) WT = RT log x

(2) WA =
RT

γ − 1
(1− x1−γ)

(3) x = 1では WT =WA = 0で等しい。

x > 1 では
d(WT −WA)

dx
= RT

(
1

x
− 1

xγ

)
となって，γ > 1 だから，この右辺は正である。ということは x > 1 で WT −WA は増加関数
なのだからWT > WA である。

(4) 略
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23 熱力学第2法則

問 1 (a)と (b)の関係は自明。

(a)と (c)は図を使って議論する。背理法の議論とする。

(c)を否定すると図のような装置が可能となり，結果的に η = 1の熱機関が実現されてしまうか
ら (a)に矛盾する・・・と考える。

問 2 図を使って議論する。

クラウジウス（問 1（c））から Q1 − q1 = Q2 − q2 >= 0 となる。また η =
W

Q1
，η0 =

W

q1
であ

る。これらから導く。

問 3 (1) 300 kJ

(2) η = 0.25

(3) クラウジウスの不等式を計算する。（単位は揃っていればよい。）

400

800
+

−300

300
= −0.5 < 0

よって不可逆である。

問 4 熱機関が壊れないためには，高温の熱源の温度は TH < 1536 ◦C = 1809 K でないといけない。

また，効率の理論的な上限から，η <= 1− TL
TH
なので，η = 0.9 であれば，低温の熱源の温度に

対して TL <= 0.1TH が要求される。これは空冷式では無理である。（海王星あたりなら可能かも
しれませんが。）

問 5 高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = RT1 log
VB
VA

ステップ 3) Qout = −RT2 log
VD
VC

= RT2 log
VC
VD

ステップ 2) T1V
γ−1
B = T2V

γ−1
C

ステップ 4) T1V
γ−1
A = T2V

γ−1
D

2), 4) から
VB
VA

=
VC
VD
。

η = 1− Qout

Qin
= 1− T2

T1

問 6 高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = RT1 log
V2
V1

ステップ 3) Qout = −RT2 log
V1
V2

= RT2 log
V2
V1

ステップ 2) Q0 が出る

ステップ 4) Q0 が入る

η = 1− Qout

Qin
= 1− T2

T1
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問 7 高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = CV (TB − TA)

ステップ 3) Qout = −CV (TD − TC)

ステップ 2) TBV
γ−1
1 = TCV

γ−1
2 → TC =

(
V1
V2

)γ−1

TB

ステップ 4) TAV
γ−1
1 = TDV

γ−1
2 → TD =

(
V1
V2

)γ−1

TA

η = 1− Qout

Qin
= 1−

(
V1
V2

)γ−1

= 1− 1

ργ−1

問 8 高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = Cp(TB − TA)

ステップ 3) Qout = −Cp(TD − TC)

ステップ 2)
T γ
B

pγ−1
2

=
T γ
C

pγ−1
1

→ TC =

(
p1
p2

)(γ−1)/γ

TB

ステップ 4)
T γ
A

pγ−1
2

=
T γ
D

pγ−1
1

→ TD =

(
p1
p2

)(γ−1)/γ

TA

η = 1− Qout

Qin
= 1−

(
p1
p2

)(γ−1)/γ

= 1− 1

ϕ(γ−1)/γ

問 9 高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = Cp(TB − TA) および TB =
V2
V1
TA が成り立つ。

ステップ 3) Qout = −CV (TD − TC)

ステップ 2) TBV
γ−1
2 = TCV

γ−1
3 → TC =

(
V2
V3

)γ−1 V2
V1
TA

ステップ 4) TAV
γ−1
1 = TDV

γ−1
3 → TD =

(
V1
V3

)γ−1

TA

η = 1− Qout

Qin
= 1− ργ − 1

γ(ρ− 1)εγ−1

問 10 pV 図はブレイトンサイクルと似たようなものとなる。状態A, B の圧力を p2，状態 C, D の
圧力を p1 とする。

高温の熱源から「入る」熱量をQin，低温の熱源に「出る」熱量を Qout とする。

ステップ 1) Qin = ∆U +W = 3(p2VB − p2VA) + p2(VB − VA) =
4σ

3
T 4
1 (VB − VA)

ステップ 3) Qout = −4σ

3
T 4
2 (VD − VC)

ステップ 2) T 3
1 VB = T 3

2 VC

ステップ 4) T 3
1 VA = T 3

2 VD

η = 1− Qout

Qin
= 1− T2

T1
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24 エントロピー，熱力学の関数

問 1 第 1法則と状態方程式から

dS =
δQ

T
=
dU + pdV

T
= CV

dT

T
+R

dV

V

となり，これを始状態から終状態まで積分する。

問 2 (1) 図の状態A, B, C, D は 11節の問 4 参照。

S

T

T1

T2

A B

C
D

S1 S2
(2) J

(3) （pV 図と同様に）1サイクルで外部にした仕事。∮
dU = 0 =

∮
TdS −

∮
pdV

問 3 (1) 内部エネルギーが変化していないため。

(2) 等温膨張で考える。

δQ = p∆V =
nRT

V
∆V ⇒ ∆S =

δQ

T
= nR

∆V

V

積分して以下となる。

S1 − S0 = nR log
V1
V0

(3) V1 > V0 から明らか。

問 4 (1) (T1 + T2)/2, これを Tf と記す。

(2)

S1 − S0 = nCV log
Tf
T1

+ nCV log
Tf
T2

= nCV log
(T1 + T2)

2

4T1T2

(3) (T1 + T2)
2 − 4T1T2 = (T1 − T2)

2 >= 1 より明らか。

問 5 (1) f(x, y, z) = 0 で微小変化を考える。

∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z = 0

すると， (
∂x

∂y

)
z

= lim
∆x

∆y

∣∣∣∣
∆z=0

= −
∂f
∂x
∂f
∂y

という関係が得られる。このような式をあと 2つ書き，掛け合わせる。

(2) (
∂V

∂T

)
p

(
∂T

∂p

)
V

(
∂p

∂V

)
T
= −1 ⇒ (βV )

(
∂T

∂p

)
V

(
1

−κV

)
= −1
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問 6 (1) 普通に計算する。

dH = d(U + pV ) = dU + d(pV ) = TdS − pdV + dpV + pdV など。他の 2つも同様。

(2) 関数 z = f(x, y) が「まとも」ならば，微分の順序を入れ替えることができ，

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
· · ·この節の記法では

(
∂

∂x

(
∂f

∂y

)
x

)
y

=

(
∂

∂y

(
∂f

∂x

)
y

)
x

である。（どのような関数かといった正確な話は数学の先生に聞く。）熱力学の関数もこのよう
な性質を持っているとする。

内部エネルギーは dU = TdS − pdV なので(
∂U

∂S

)
V
= T,

(
∂U

∂V

)
S
= −p

である。
∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)
⇒

(
∂T

∂V

)
S
=

(
∂(−p)
∂S

)
V

H,F,G について同様の計算を行うと他の 3つも得られる。

問 7 (1) T 一定として U を V で微分し，マクスウェルの関係式の 3番目を使う。

(2) 理想気体では左辺はゼロである。右辺を具体的に計算する。

(3) 状態方程式を p =の形に変形して右辺に代入すれば出てくる。

(4) 10節の問 6，7と同様。

p, V の関係は以下である。 (
p+

a

V 2

)
(V − b)γ =一定

問 8 (1)

∆S >=
δQ

T
→ T∆S >= δQ

となる。すると等温変化（ T = 一定）のとき，∆U = δQ− δW <= T∆S − δW となるので

−∆F = −∆(U − TS) >= δW (T =一定)

を得る。このことは，等温変化において，外になすことのできる仕事 δW はヘルムホルツの自
由エネルギーの減少分 −∆F 以下である，ということを表す。つまりヘルムホルツの自由エネ
ルギー F は等温変化における利用可能なエネルギーを表している。

なお，>=は最初から追いかければ，等号が可逆変化，不等号が不可逆変化に対応していること
に留意されたい。

(2) H = U + pV なので，∆H(定圧) = ∆U + p∆V = δQ となる。

(3) G = U − TS + pV なので，∆G(等温, 定圧) = ∆U − T∆S + p∆V , この右辺は可逆のとき
0。詳しくは (1)の議論も参照のこと。

(4) F = U − TSなので，∆F (等温, 定積) = ∆U − T∆S, この右辺は可逆のとき= p∆V = 0。
詳しくは (1)の議論も参照のこと。


